CS 2334: Lab 2
Unit Testing



Notes

* Rubric for each lab and project tells you what we are
specifically looking for when we are grading your
assignments



Specification to Working Implementation

A full specification tells us:
* Method prototypes

* Defines the type, meaning and expected values of the input
parameters

* Defines the type, meaning and expected value of the return
value

* Defines any side-effects (changes to the object on which the
method was called)



Specification to Working Implementation

Implementation:

* Translation of the full specification into the code that makes
it happen

* Once the implementation is complete, we are not done — we
have to convince ourselves (and others) that the
implementation behaves according to the specification



Unit Testing

* Formal process of testing our code base

* Create a set of test methods
* Each method tests one or more aspects of our code
* Provide a known set of inputs into a method
* Checks the output from the method against an expected value
* Checks the side effects (usually by calling other getter methods)



Unit Testing

The set of test methods should (together) verify that each part
of our code is working properly

(o:
I

f” and “else” branch
* Every for/while loop

* Every

* Every case of a switch
* Every class

It feels like a lot of work, but it can dramatically improve the
qguality of our code



Unit Test Class

* A single unit test class contains a set of test methods

* Each test method includes:
* Creating objects and/or initialization of primitives
* Exercising of a set of methods

 Comparing the results of the above method calls against expected
values. This process is called Assertion



An Example

import org.junit.Test;
import org.junit.Assert;

public class IntTest {
@Test
public void testl () {
int a = 5; // Initialization
int b = 37;

int ¢ = a + b; // Use addition operator

Assert.assertEquals(c, 42); // Fails if not true



Example Il

import org.junit.Test;

import org.junit.Assert;

public class DoubleTest {
@Test
public void test2 () {
double a = 5; // Initialization
double b = 37;

double ¢ = a + b; // Use addition operator

// The two values must be within 0.0001 of each other
Assert.assertEquals(c, 42.0, 0.0001); // Fails if not true



Example Il

import org.junit.Test;
import org.junit.Assert;

public class StringTest {
@Test
public void test3 () {
String foo = "Foo"; // Create object

foo += "Bar"; // Modify object

// Test result of operation
Assert.assertTrue (foo.equals ("FooBar"));



Assert Class

For a more detailed discussion of the Assert class, see:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

(linked from the lab2 description)

Andrew H. Fagg: CS2334: Lab 2

11


http://junit.sourceforge.net/javadoc/org/junit/Assert.html

Lab 2

Lab 2 consists of two key classes:

* Fruit objects store the name, weight and price of one type of
fruit

* FruitBasket objects store a group of Fruit objects
* Can ask about the total weight and cost of items in the basket

* Can ask about the total weight and cost of items matching a
particular name



Lab 2 Preparation

* Download lab2.zip
* Import into your Eclipse project

(details of how to do this are in the lab specification)

Demonstrate import



Unit Test Creation

Demonstrate unit test creation for Fruit class (FruitTest2)

Demonstrate testing of name, weight and price — at least two
test methods



Lab 2 Requirements

* Produce a unit test class for FruitBasket
* This class will have a set of test methods
e Must test all aspects of the FruitBasket class

* As part of the testing process, you will discover a set of bugs
in the FruitBasket class
* Fix these bugs
 All of your tests must pass

* Note: we will test your code with our own unit tests. So, you must
design your tests carefully to make sure you don’t miss anything



Demonstrate: examine FruitBasket class and discuss
specifications for a couple of the complicated methods



Submission

e Submit only one file: lab2.zip (casing matters)
* Due date: Friday, September 4t @11:59pm
e Submit to lab2 dropbox on D2L



