
CS 2334: Lab 2
Unit Testing

Andrew H. Fagg: CS2334: Lab 2 1

Notes
• Rubric for each lab and project tells you what we are

specifically looking for when we are grading your
assignments

Andrew H. Fagg: CS2334: Lab 2 2

Specification to Working Implementation

A full specification tells us:

• Method prototypes

• Defines the type, meaning and expected values of the input
parameters

• Defines the type, meaning and expected value of the return
value

• Defines any side-effects (changes to the object on which the
method was called)

Andrew H. Fagg: CS2334: Lab 2 3

Specification to Working Implementation

Implementation:

• Translation of the full specification into the code that makes
it happen

• Once the implementation is complete, we are not done – we
have to convince ourselves (and others) that the
implementation behaves according to the specification

Andrew H. Fagg: CS2334: Lab 2 4

Unit Testing

• Formal process of testing our code base

• Create a set of test methods
• Each method tests one or more aspects of our code

• Provide a known set of inputs into a method

• Checks the output from the method against an expected value

• Checks the side effects (usually by calling other getter methods)

Andrew H. Fagg: CS2334: Lab 2 5

Unit Testing

The set of test methods should (together) verify that each part
of our code is working properly

• Every “if” and “else” branch

• Every for/while loop

• Every case of a switch

• Every class

It feels like a lot of work, but it can dramatically improve the
quality of our code

Andrew H. Fagg: CS2334: Lab 2 6

Unit Test Class

• A single unit test class contains a set of test methods

• Each test method includes:
• Creating objects and/or initialization of primitives

• Exercising of a set of methods

• Comparing the results of the above method calls against expected
values. This process is called Assertion

Andrew H. Fagg: CS2334: Lab 2 7

An Example
import org.junit.Test;

import org.junit.Assert;

public class IntTest {

@Test

public void test1() {

int a = 5; // Initialization

int b = 37;

int c = a + b; // Use addition operator

Assert.assertEquals(c, 42); // Fails if not true

}

}

Andrew H. Fagg: CS2334: Lab 2 8

Example II
import org.junit.Test;

import org.junit.Assert;

public class DoubleTest {

@Test

public void test2() {

double a = 5; // Initialization

double b = 37;

double c = a + b; // Use addition operator

// The two values must be within 0.0001 of each other

Assert.assertEquals(c, 42.0, 0.0001); // Fails if not true

}

}

Andrew H. Fagg: CS2334: Lab 2 9

Example III
import org.junit.Test;

import org.junit.Assert;

public class StringTest {

@Test

public void test3() {

String foo = "Foo"; // Create object

foo += "Bar"; // Modify object

// Test result of operation

Assert.assertTrue(foo.equals("FooBar"));

}

}

Andrew H. Fagg: CS2334: Lab 2 10

Assert Class

For a more detailed discussion of the Assert class, see:

http://junit.sourceforge.net/javadoc/org/junit/Assert.html

(linked from the lab2 description)

Andrew H. Fagg: CS2334: Lab 2 11

http://junit.sourceforge.net/javadoc/org/junit/Assert.html

Lab 2

Lab 2 consists of two key classes:

• Fruit objects store the name, weight and price of one type of
fruit

• FruitBasket objects store a group of Fruit objects
• Can ask about the total weight and cost of items in the basket

• Can ask about the total weight and cost of items matching a
particular name

Andrew H. Fagg: CS2334: Lab 2 12

Lab 2 Preparation

• Download lab2.zip

• Import into your Eclipse project

(details of how to do this are in the lab specification)

Demonstrate import

Andrew H. Fagg: CS2334: Lab 2 13

Unit Test Creation

Demonstrate unit test creation for Fruit class (FruitTest2)

Demonstrate testing of name, weight and price – at least two
test methods

Andrew H. Fagg: CS2334: Lab 2 14

Lab 2 Requirements

• Produce a unit test class for FruitBasket
• This class will have a set of test methods

• Must test all aspects of the FruitBasket class

• As part of the testing process, you will discover a set of bugs
in the FruitBasket class
• Fix these bugs

• All of your tests must pass

• Note: we will test your code with our own unit tests. So, you must
design your tests carefully to make sure you don’t miss anything

Andrew H. Fagg: CS2334: Lab 2 15

Demonstrate: examine FruitBasket class and discuss
specifications for a couple of the complicated methods

Andrew H. Fagg: CS2334: Lab 2 16

Submission

• Submit only one file: lab2.zip (casing matters)

• Due date: Friday, September 4th @11:59pm

• Submit to lab2 dropbox on D2L

Andrew H. Fagg: CS2334: Lab 2 17

