CS 2334:Lab 6
Abstract Classes & Interfaces

Abstract Class

Few important points to remember about abstract classes:

 An abstract class is a class that is declared ‘abstract’
* |t can, but does not have to, include abstract methods

* Abstract classes can not be instantiated but they can be
subclassed using the extends keyword

e An abstract method is a method that is declared without an
implementation
* Requires the abstract keyword

Abstract Class

* |If a class includes abstract methods, then the class itself must be
declared as abstract.

//declaring class abstract
public abstract class Person{
//declaring method abstract

abstract void generateID();

b

 When a child class extends an abstract class, it must either:
* Provide implementations for all abstract methods from its parent class, or
* Also be abstract

* Child (c)lasses can reference the constructor of abstract class by using
super

Interface

* Interface is a blueprint of a class.
* |t has static constants and abstract method only

* |t can not be instantiated

* Interface represents is-a relationship

interface printable{
void print();
}

class print implements printable{
public void print(){System.out.printin(“Hello”);}

}

What is the Difference between
Abstract Classes and Interfaces?

Abstract Classes vs Interfaces

e Abstract class can have abstract and non-a
while interface can only have abstract met

* Class inheritance (extension) does not sup

nstract methods
nods

oort multiple

inheritance, while a class can implement an arbitrary

number of interfaces

e Abstract classes can have final, non-final, static or non-static
variables while interface can have only final and static

variables

Lab 6: Representing Shapes

Given a UML diagram that describes the relationships
between shape classes:

* Implement each class, including the specified instance
variables and methods

* Implement testing procedures for the classes

Representing
Different
Geometrical
Shapes

Interfaces from the
Java API:

 Comparable
* Comparator

Comparator e
!T\‘ Shape
| _
! Adk int
ShapeComparator +Shape()

+compare(sl:Shape, s2:Shape):int
+equalsis1:Shape, s2:Shape):boolean

+getNums hapes():int
+getld():int
+compareTol Shape s):int
+toString():String
+getdreal - double

+geltPerimetery):double
+getshapeTypel)5 tring

|

Comparable

Circle

Quadrilateral

-radius:double

-height:double
-width:double

+Circlel(radius: double)
+getArea():double
+getPerimeter():double
+getShapeTypel): String
All Getters

+Quadrilateral(height: double width: double)

All Getters

Rectangle

+Rectangle(height: double width: double)
+getArea():double
+getPerimeter():double
+getShapeTypel(:String

|

Square

+Square(size:double)
+getShapeTypel :String

Triangle

-height:double
-basewidth:double
-sidel1Length:double
-side2Length:double

+Trianglel height:double, baseWidth: double,
sidelLength:double,side2Length: double)

+getArea():double

+getPerimeter():double

+getShapeTypel(:String

All Getters

Lab 6 Preparation

* Download lab6-initial.zip
* Import into your Eclipse environment

(details of how to do this are in the lab specification)

Lab 6 Notes

* Create each class in the UML diagram
* Include all methods and instance variables, with the specified
visibility
* Watch spelling and casing
e Use the default package

* Implement attributes and methods

 Classes are dependent on each other, so you can have temporary
errors while you implement

* Expand on the given test class to make sure it all works

Submission

e Submit only one file: lab6.zip (casing matters)
* Due date: Friday, October 2" @11:59pm
e Submit to lab6 dropbox on D2L

