
CS 2334: Lab 6
Abstract Classes & Interfaces

Andrew H. Fagg: CS2334: Lab 6 1

Abstract Class

Few important points to remember about abstract classes:

• An abstract class is a class that is declared ‘abstract’
• It can, but does not have to, include abstract methods

• Abstract classes can not be instantiated but they can be
subclassed using the extends keyword

• An abstract method is a method that is declared without an
implementation
• Requires the abstract keyword

Andrew H. Fagg: CS2334: Lab 6 2

Abstract Class
• If a class includes abstract methods, then the class itself must be

declared as abstract.
//declaring class abstract
public abstract class Person{

//declaring method abstract
abstract void generateID();

}
• When a child class extends an abstract class, it must either:

• Provide implementations for all abstract methods from its parent class, or
• Also be abstract

• Child classes can reference the constructor of abstract class by using
super()

Andrew H. Fagg: CS2334: Lab 6 3

Interface

• Interface is a blueprint of a class.
• It has static constants and abstract method only

• It can not be instantiated

• Interface represents is-a relationship
interface printable{

void print();
}

class print implements printable{
public void print(){System.out.println(“Hello”);}

}

Andrew H. Fagg: CS2334: Lab 6 4

What is the Difference between
Abstract Classes and Interfaces?

Andrew H. Fagg: CS2334: Lab 4 5

Abstract Classes vs Interfaces

• Abstract class can have abstract and non-abstract methods
while interface can only have abstract methods

• Class inheritance (extension) does not support multiple
inheritance, while a class can implement an arbitrary
number of interfaces

• Abstract classes can have final, non-final, static or non-static
variables while interface can have only final and static
variables

Andrew H. Fagg: CS2334: Lab 4 6

Lab 6: Representing Shapes

Given a UML diagram that describes the relationships
between shape classes:

• Implement each class, including the specified instance
variables and methods

• Implement testing procedures for the classes

Andrew H. Fagg: CS2334: Lab 6 7

Andrew H. Fagg: CS2334: Lab 6 8

Representing
Different

Geometrical
Shapes

Interfaces from the
Java API:

• Comparable

• Comparator

Lab 6 Preparation

• Download lab6-initial.zip

• Import into your Eclipse environment

(details of how to do this are in the lab specification)

Andrew H. Fagg: CS2334: Lab 6 9

Lab 6 Notes

• Create each class in the UML diagram
• Include all methods and instance variables, with the specified

visibility

• Watch spelling and casing

• Use the default package

• Implement attributes and methods
• Classes are dependent on each other, so you can have temporary

errors while you implement

• Expand on the given test class to make sure it all works

Andrew H. Fagg: CS2334: Lab 6 10

Submission

• Submit only one file: lab6.zip (casing matters)

• Due date: Friday, October 2nd @11:59pm

• Submit to lab6 dropbox on D2L

Andrew H. Fagg: CS2334: Lab 6 11

