
CS 2334: Lab 7
Generics, Lists and Queues

Andrew H. Fagg: CS2334: Lab 7 1

Generics

We know that we can assign an object of one class to an
object of another class provided that they are compatible. For
example:

Public void sampleMethod(Number n){…}

sampleMethod(new Integer(2));

sampleMethod(new Double(2.1));

• These are okay because Integer and Double are subtypes of
Number

Andrew H. Fagg: CS2334: Lab 7 2

Generics

The same is true with generics. We can perform a generic type
invocation with Number as its argument, and it will be
compatible with objects of type Number. For example:

ArrayList<Number> list1 =

new ArrayList<Number>();

ArrayList.add(new Integer(2));

ArrayList.add(new Double(2.1));

Andrew H. Fagg: CS2334: Lab 7 3

Implementing Generics

• Generics enable types (classes and interfaces) to be
parameters when defining classes, interfaces or methods.

• This makes it possible to re-use the same code with different
types.

Andrew H. Fagg: CS2334: Lab 7 4

Implementing Generics

Example:

class Person<E>{

private E id;

public Person(E id){

this.id = id;

}

public E getId(){

return id;

}

}

Person<Integer> p1 = new Person<Integer>(22);

Person<String> p2 = new Person<String>(“22”);

Andrew H. Fagg: CS2334: Lab 7 5

Multiple Type Parameters
A generic class can have multiple type parameters. For example:

class Instructor<U, V>{

private U courseNum;

private V name;

public Instructor (U courseNum, V name){

courseNum= courseNum;

this.name = name;

}

}

Person<Integer, String> p1 =

new Person<Integer, String>(01,”Joe”);

Andrew H. Fagg: CS2334: Lab 7 6

Bounded Type Parameters

• Bounded type parameters allow us to restrict the types that
can be used as type arguments in a parameterized type.

• They also allow us to invoke methods from the types defined
in the bounds.

• To declare a bounded parameter, list the type parameter’s
name, followed by the extends keyword (implements for
interfaces), then its upper bound.

Andrew H. Fagg: CS2334: Lab 7 7

Implementing Bounded Type Parameters

Example:

class NaturalNum<E extends Integer>{

private E n;

public NaturalNum(E n){

this.n = n;

}

public E isEven(){

return n.intValue() % 2 == 0;

}

}

isEven() invokes intValue(), a method defined in the Integer class

Andrew H. Fagg: CS2334: Lab 7 8

Implementing Bounded Type Parameters
Example: Using a pre-defined class as the upper bound

class Student<E extends Person<E2>, E2> {

public E2 StudentId(E gen){

return gen.getId();

}

}

• First parameter: E

• Second parameter: E2

But, they have a specific relationship: E is-a Person<E2>
Andrew H. Fagg: CS2334: Lab 7 9

Stacks and Queues
• Stacks and Queues are defined by two basic operations:

inserting a new item, and removing an item.

• The rules differ when we add and remove items for each
container

Andrew H. Fagg: CS2334: Lab 7 10

Queues

• A queue removes an object according to the first-in-first-out
(FIFO) principle.

• An object may be inserted at any time, but only the object
that has been in the queue the longest is removed.

• Objects are inserted at the rear and removed from the front.

Andrew H. Fagg: CS2334: Lab 7 11

Queues

• The queue supports two main methods:
• add(Object o): inserts Object o at the rear of the queue

• remove(): removes the object from the front of the queue

• Other methods supported by the queue data type can be
found in the Java API:
• https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html

Andrew H. Fagg: CS2334: Lab 7 12

https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html

Stacks

• A stack removes an object according to the last-in-first-out
(LIFO) principle, and adds an object to the top of the list.

• Only the last (or most recently) added object can be
removed.

Andrew H. Fagg: CS2334: Lab 7 13

Stacks

• The stack data type supports two main methods:
• push(o): adds Object o to the top of the stack

• pop(): Removes the top object and returns it.

• Other methods supported by the stack data type can be
found in the Java API:
• https://docs.oracle.com/javase/8/docs/api/java/util/Stack.html

Andrew H. Fagg: CS2334: Lab 7 14

https://docs.oracle.com/javase/8/docs/api/java/util/Stack.html

Enumerated Data Types

• An enumerated type is a special data type that allows a
variable to be one of a set of predefined constants.

• Example: Types of Cars

public enum Car{

FORD, TOYOTA, HONDA;

}

Note: the names of an enum type’s fields are in uppercase
letters because they are constants (this is the convention)

Andrew H. Fagg: CS2334: Lab 7 15

Enumerated Data Types

public enum Car{

FORD, TOYOTA, HONDA;

}

Can the use our enum as a variable type:

Car c = FORD;

if(c == TOYOTA) {

…

}
Andrew H. Fagg: CS2334: Lab 7 16

Enumerated Data Types

The variables of an enumerated type can also be defined with a
value. Example:

public enum Car{

//these are calls to the constructor

FORD("Truck"), TOYOTA("SUV"), HONDA("Van");

private Car(String carType){

this.carType= carType;

}

}

Note: the constructor for an enum must be private (only the class
creates instances)

Andrew H. Fagg: CS2334: Lab 7 17

Lab 7: Card Game

• We will create a card game. The game has two decks of
cards: a poker deck and a color deck.

• To play the game:
- The player draws one card from each deck

- If the color card is RED, the player wins if the poker card has an
even value

- If the color card is BLUE, the player wins if the poker card is
divisible by three

Andrew H. Fagg: CS2334: Lab 7 18

Demonstration

Andrew H. Fagg: CS2334: Lab 7 19

Implementation

We need several pieces:

• An enum for representing colors (RED/BLUE) – we provide
this

• A general notion of a Card.
• Cards have a generic type associated with them

• A general notion of a Deck
• Stacks of used and unused cards

• Shuffling & drawing operations

• A generic Deck is made up of a specific type of Card

Andrew H. Fagg: CS2334: Lab 7 20

UML?

Andrew H. Fagg: CS2334: Lab 7 21

Lab 7 Preparation

• Download lab7-initial.zip

• Import into your Eclipse project

(details of how to do this are in the lab specification)

Andrew H. Fagg: CS2334: Lab 7 22

Lab 7

• We’ve provided three fully implemented classes
- Card

- MyColor

- PokerDeck

(Do not modify these classes)

• Implement the other classes represented in the UML
- Watch spelling and casing

*During the lab: stop part way into their work to discuss one or two methods in Deck()

Andrew H. Fagg: CS2334: Lab 7 23

Submission

• Submit only one file: lab7.zip (casing matters)

• Due date: Sunday, October 11th @11:59pm

• Submit to lab7 dropbox on D2L

Andrew H. Fagg: CS2334: Lab 7 24

