Abstract Classes and
Interfaces

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten

Classes as Contracts

Recall: the public interface of a class is a
promise to users of the class

e Guarantee that certain methods will be
available and that they have specific
prototypes

*Guarantee that certain instance variables can
be accessed (though we should generally not
be using public instance variables)

Classes as Contracts

These promises extend into the class hierarchy

*The superclass makes certain promises about
available methods and instance variables

*These promises must be kept by all child
classes

* But: the implementation of these promises can
be overridden

Inheritance example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

Classes as Contracts

Sometimes, a superclass needs to make a
promise, but cannot provide an
implementation

eDeclare methods as abstract
eDeclare class as abstract

Example

public abstract class Produce {
protected double price;

public Produce () {
}

public abstract double computePrice (double number) ;

public String toString() {

return "Produce: S$" + price;

Note: no method body for abstract method!

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 6

Abstract Classes

Cannot be instantiated!

NO: Produce p = new Produce () ;

Abstract Classes

Cannot be instantiated!

NO: Produce p = new Produce () ;

e... but can be used as types:
Produce p = new Apple();

Very powerful: we can write methods that
know how to interface with abstract types

Abstract Classes

Can also create arrays:

ArrayList<Produce> L =

new ArraylList<Produce> () ;
L.add (new Apple (0.5, 3.5));
L.add (new Orange (2.5, 4.25));

Abstract Classes

A class that extends an abstract class must:
*Implement all abstract methods
eor also be abstract

Properties of Abstract Classes
Must provide constructors

*These constructors are protected or private
*Child classes can reference these with super()

e Could be the default constructor

Best Practices

In the abstract superclass:

*Provide as many method implementations as
possible

*These implementations may call abstract
methods

* The methods will ultimately be implemented by
the child classes (or grandchildren, etc).

e |t is these concrete classes that ensure all
methods are implemented

Java APIl Examples

* ArraylList
*GregorianCalendar

\What do the class hierarchies look like?

*What aspects of the superclasses are
abstract/.

Examp Ie

N‘ e‘s\\ 104 RSN AL A VRS M |

e Kingdom: Animalia
* Phylum: Chordata
* Class: Mammalia

* Order: Carnivora

* Family: Felidae

* Genus: Panthera
* Species: leo
Species: pardus
Species: tigris
Species: onca

9

!
||

Class

Order

g
0

Famlly

g

Genus

* What is UML?

* Make an ArraylList of large cats
at a zoo (give them names)

Species

Pictures and classification from wikipedia
http://en.wikipedia.org/wiki/Kingdom_(biology)

Multiple Inheritance

Example: we might want to make a superclass
of Cloneable objects

*A clone of an object is equal in content but
distinct in memory footprint

*Clone of not just the object’s memory, but of
all of its component objects (and their
components, etc.)

*Cloneable requires the implementation of a
clone() method that produces the copy

But there is a problem...

But there is a problem...

Java restriction:

*|f a class inherits from the Cloneable class,
then it cannot inherit from any other class

*Not allowing multiple inheritance solves
some serious problems, but it is limiting

Java’s Workaround: The Interface

* An interface defines no implementation —
only a set of abstract methods

* All checks can be made at compile time, so
the runtime cost is low

Interfaces: Syntax

public interface InterfaceName {
public abstract int methodName ()

public class ClassName i1mplements IntefaceName {
public int methodName () {
// Concrete implementation

}

How Does this Fix Our Cloneable Problem?

How Does this Fix Our Cloneable Problem?

We can extend a different class and still make
the same guarantees as those provided by
Cloneable:

public class Apple extends Fruit implements Cloneable(

}

A class can implement any number of interfaces

Comparable<T>

This interface requires only one method:
int compareTo (T object)

*T is a placeholder for any class name

*Returns

* negative number if this < object
zero if they are equal
* positive number if this > object

*Defines a Natural Ordering of objects of class T
* Basis for using generic sorting methods

Example

*Person class: first name, last name, phone
number

*Implement comparable to sort by last name
then by first name

*Show use with Collections.sort()

Abstract Classes & Interfaces

Similarities:
* Have missing methods that must be

implemented by the child/implementing
classes

*Cannot be instantiated
*Can be used as reference types

Abstract Classes & Interfaces

Differences:
*Interfaces have no constructors

*Interfaces can only define public static and
final variables

*A class can implement multiple interfaces

* Abstract classes can implement some
methods

Abstract Classes & Interfaces

Best practices:
*Use interfaces when you can

*Use inheritance when you are adding new
functionality to a class that already
implements some functionality

*Inheritance: “is-a” relationship
e|nterface: can be “is-a”, “has-a” or “does-a”

Comparator<T>

* Must implement:
int compare (T ol, T 02)

*Not typically part of the class T

* Allows us to define many different ways to
sort

*Example with Person ...

