
Abstract Classes and
Interfaces

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 1

Classes as Contracts

Recall: the public interface of a class is a
promise to users of the class

•Guarantee that certain methods will be
available and that they have specific
prototypes

•Guarantee that certain instance variables can
be accessed (though we should generally not
be using public instance variables)

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 2

Classes as Contracts

These promises extend into the class hierarchy

•The superclass makes certain promises about
available methods and instance variables

•These promises must be kept by all child
classes
•But: the implementation of these promises can

be overridden

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 3

Inheritance example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 4

Classes as Contracts

Sometimes, a superclass needs to make a
promise, but cannot provide an
implementation

•Declare methods as abstract

•Declare class as abstract

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 5

Example
public abstract class Produce {

protected double price;

public Produce(){

}

public abstract double computePrice(double number);

public String toString(){

return "Produce: $" + price;

}

}

Note: no method body for abstract method!
Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 6

Abstract Classes

•Cannot be instantiated!

No: Produce p = new Produce();

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 7

Abstract Classes

•Cannot be instantiated!

No: Produce p = new Produce();

•… but can be used as types:

Produce p = new Apple();

Very powerful: we can write methods that
know how to interface with abstract types

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 8

Abstract Classes

Can also create arrays:

ArrayList<Produce> L =

new ArrayList<Produce>();

L.add(new Apple(0.5, 3.5));

L.add(new Orange(2.5, 4.25));

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 9

Abstract Classes

A class that extends an abstract class must:

•Implement all abstract methods

•or also be abstract

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 10

Properties of Abstract Classes

Must provide constructors

•These constructors are protected or private

•Child classes can reference these with super()

•Could be the default constructor

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 11

Best Practices

In the abstract superclass:

•Provide as many method implementations as
possible

•These implementations may call abstract
methods
•The methods will ultimately be implemented by

the child classes (or grandchildren, etc).
• It is these concrete classes that ensure all

methods are implemented

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 12

Java API Examples

•ArrayList

•GregorianCalendar

•What do the class hierarchies look like?

•What aspects of the superclasses are
abstract/.

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 13

Example

• Kingdom: Animalia
• Phylum: Chordata
• Class: Mammalia
• Order: Carnivora
• Family: Felidae
• Genus: Panthera

• Species: leo
• Species: pardus
• Species: tigris
• Species: onca

• What is UML?
• Make an ArrayList of large cats

at a zoo (give them names)

http://en.wikipedia.org/wiki/Kingdom_(biology)

Pictures and classification from wikipedia

Multiple Inheritance

Example: we might want to make a superclass
of Cloneable objects

•A clone of an object is equal in content but
distinct in memory footprint

•Clone of not just the object’s memory, but of
all of its component objects (and their
components, etc.)

•Cloneable requires the implementation of a
clone() method that produces the copy

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 15

But there is a problem…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 16

But there is a problem…

Java restriction:

•If a class inherits from the Cloneable class,
then it cannot inherit from any other class

•Not allowing multiple inheritance solves
some serious problems, but it is limiting

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 17

Java’s Workaround: The Interface

•An interface defines no implementation –
only a set of abstract methods

•All checks can be made at compile time, so
the runtime cost is low

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 18

Interfaces: Syntax

public interface InterfaceName{

public abstract int methodName()

:

}

public class ClassName implements IntefaceName{

public int methodName(){

: // Concrete implementation

}

:

}

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 19

How Does this Fix Our Cloneable Problem?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 20

How Does this Fix Our Cloneable Problem?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 21

We can extend a different class and still make
the same guarantees as those provided by
Cloneable:

public class Apple extends Fruit implements Cloneable{

:

:

}

A class can implement any number of interfaces

Comparable<T>

This interface requires only one method:
int compareTo(T object)

•T is a placeholder for any class name

•Returns
•negative number if this < object
• zero if they are equal
•positive number if this > object

•Defines a Natural Ordering of objects of class T
•Basis for using generic sorting methods

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 22

Example

•Person class: first name, last name, phone
number

•Implement comparable to sort by last name
then by first name

•Show use with Collections.sort()

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 23

Abstract Classes & Interfaces

Similarities:

•Have missing methods that must be
implemented by the child/implementing
classes

•Cannot be instantiated

•Can be used as reference types

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 24

Abstract Classes & Interfaces

Differences:

•Interfaces have no constructors

•Interfaces can only define public static and
final variables

•A class can implement multiple interfaces

•Abstract classes can implement some
methods

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 25

Abstract Classes & Interfaces

Best practices:

•Use interfaces when you can

•Use inheritance when you are adding new
functionality to a class that already
implements some functionality

•Inheritance: “is-a” relationship

•Interface: can be “is-a”, “has-a” or “does-a”

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 26

Comparator<T>

•Must implement:

int compare(T o1, T o2)

•Not typically part of the class T

•Allows us to define many different ways to
sort

•Example with Person …

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 27

