Binary
Input/Output

Slides derived from the work of
Dr. Amy McGovern and Dr. Deborah Trytten

File Abstraction

*Lowest level: Sequence of bytes

*How we interpret each byte (or group of
bytes) depends on the context

Data Types

Different primitive data types in Java require
different amounts of space

*byte: 1 byte
*short: 2 bytes
*int/float: 4 bytes
edouble: 8 bytes

Characters: * ASCll char: 1 byte

several Options *Unicode: 2 bytes
* Extended Unicode: 3 bytes

Dec HxQct Char Dec Hx Qct Himl ©hr [Dec Hx @ct Himl Shr| Dec Hx Oct Himl Chr
0o 0 000 NOL frmall) 32 20 D40 Zpace| g4 40 100 s#6d; [95 g0 la0 s#96:
1 1 00l 50H (start of heading) 33 21 041 &=#33; ! 65 41 101 «#65; 4 [97 gl 141 =#97; =2
2 2 002 5Tx [(start of text) 34 22 04z &f34: "7 ao 42 102 «#66: E a5 g2 14z b: b
3 3 003 ETx (end of text) 35 Z3 043 #: # a7 43 103 =#67: C 99 53 143 c: C
4 4 004 EOT {end of transmission) 36 24 044 $ 7 65 44 104 «#653; D (100 &4 144 &#l00; d
S 5 005 ENO (enquiry) 37 25 045 %: % A9 45 105 &«#69; E (10l 65 145 &#l01; &
6 6 006 ACE [(acknowledge) 33 26 04 #3587 & 70 48 106 «#70; F |l102 &6 146 s#l02; £
T 7 007 BEL (bell) 39 27 047 ':; " 71 47 107 «#71:; O (103 67 147 g: o
& & 010 BEf (backspace) 40 28 050 (| 72 45 110 «#72; H (104 &5 150 &#l04: h
9 9 011 TAE (horizontal tab) 4] 29 051):;) 73 49 111 «#73; I |105 &9 151 &#l05; 1

10 4 0lZ LF (NL line feed, new line)| 42 24 052 &#d2; * 74 44 112 «#74; T |l06 64 152 s#l06;7]

11 B 013 ¥T ([wertical tah) 43 2B 053 + + 75 4B 113 K:; K |107 6B 153 s#107: k

12 C 0l4 FF (NP form feed, new page)| 44 2C 054 ,d; | 76 4C 114 «#76; L |108 &C 154 «#1058; 1

13 D 0l5 CE (carriage return) 45 2ZD 055 - - 77 4D 118 M: M |109 6D 155 m: m

14 E 0l 30 (shift out) 45 2E 056 #4687 . 78 4E 116 K N (110 oE 156 &#l10: 1

15 F 017 51 (shift in) 47 2F 057 /: 7 79 4F 117 O: 0 (111 6F 157 &#l1l: o

16 10 020 DLE [(data link escape) 43 30 060 -: 0 g0 50 120 P (112 70 le0 &#ll2: b

17 11 021 DCLl [dewice control 1) 49 31 0Al 1: 1 g1 51 121 «#31; O (113 71 16l &#ll3: o

18 12 022 DCE [dewice control 2) 50 32 0RZ 2r 2 gz 52 12z R: E (114 72 1lazZ &#lld: ¢

19 13 023 DC3 (dewice control 3) 51 33 063 3: 3 93 53 123 S: % (115 73 1a3 &#l15; =

20 14 024 DC4 [dewice control 4) 52 34 0pd 4: 4 g4 54 124 Ȗ T |11s 74 1lad t ©

21 15 025 NAE (negatiwe acknowledge) 53 35 0A5 Ȕ 5 85 55 125 # T (117 75 1la& &#l17: u

22 16 026 5¥N (synchronous idle) 54 36 Ofg 6: 6 g5 56 125 $ WV |113 Te len v W

23 17 027 ETE (end of trans. block) 85 37 067 7: 7 87 57 127 %: W |119 77 167 l19; w

24 15 030 CAN [cancel) 85 358 070 8: 8 88 58 130 U: X |120 7§ 170 x x

25 19 031 EM (end of medium) 57 39 071 9: 9 89 59 131 ':; T |121 79 171 Z1: ¥

26 14 032 SUE [(substitute) 58 34 072 5: ¢ a0 54 132 Z £ |122 T4 172 &#lEZ: E

27 1B 033 E3C [escape) 59 3B 073 ;: » 91 5B 133 &«#%1; [|123 7B 173 &#l23; |

28 1C 034 F3 [(file separator) 60 3C 074 &#a60; < 92 5C 134 \: % |124 TC 174 Z4;

29 1D 035 G5 (group sSeparator) 6l 3D 075 l: = 93 5D 135]] |125 7D 175 &#l25; |

30 1E 036 E% (record separator) 62 3E 076 >) > 94 5E 136 ^ * (126 7E 176 &#lzZ6; ~

531 1F 037 US [(unit separator) £3 3F 077 ? 7 95 5F 137 &«#95; |127 7F 177 &#l27; DEL

Source: www.LookupTables.com

Low Level Files

FilelInputStream/FileOutputStream
*Byte-level interface to the file

*read() and write() “think” in terms of arrays
of bytes to be read and written

Character-Level Interaction

BufferedReader/BufferedWriter (you already
have experience with these):

*Read/write individual characters or entire
Strings

Data-Level Interaction

Want to store primitive types in the file
without having to deal directly at the byte
level

*DatalnputStream/DataOutputStream

*readShort(), readLong(), readDouble()
ewriteShort(), writeLong(), writeDouble()

*You must keep track of the sequence that
these primitive values are stored in

DatalnputStream/DataOutputStream example

Buffering

*For hard disks, we tend to not read/write
individual bytes, but instead read/write
entire blocks of bytes

*This makes access performance much better

Buffering

Java exposes this to us to a small degree: we

can wrap a BufferedOutputStream around a
FileOutputStream

* Many variables may be written to the “file”,

but only occasionally are these written out to
the disk

* Added method: flush() — forces all buffered
bytes to be written immediately

Object-Level Interaction

ObjectIinputStream/ObjectOutputStream
*Can read/write entire objects in one call

*Class must implement the Serializable
interface
* Marker interface: we don’t have to implement
anything
*Read/Write is recursive

*If an object contains references to other objects —
they are read/written, too

Object-Level Interaction

Example...

Very Recursive

Collection demonstration

Very Recursive

When we write/read an object:

* All of the contents are written/read,
including other objects

*Copy stops before we make multiple copies
of objects

*Can keep a variable from being written using
the transient keyword

More about Serializable

*To be written to an ObjectOutputStream, a
class must implement Serializable

* All variables must also be primitive,
Serializable or transient
e Same for their children...

*Class data are not included with objects

End of File

*Finding when you’ve reached the end of the
file is problematic in Java

*Many read() methods will return a special
value to indicate that the end of file has been
reached

*For DatalnputStream and
ObjectinputStream: the EOFException will be
thrown

Critical Idea

* Must match data format in input and output
operations
*If you write it as a byte, you read it as a byte
* If you write UTF-8, you read UTF-8
* If you write characters, you read characters

*Order is important because streams are
sequential

Andrew H. Fagg: CS 2334: Binary 1/0

18

