
Binary 
Input/Output

Slides derived from the work of 

Dr. Amy McGovern and Dr. Deborah Trytten



File Abstraction

•Lowest level: Sequence of bytes

•How we interpret each byte (or group of 
bytes) depends on the context

Andrew H. Fagg: CS 2334: Binary I/O 2



Data Types

Different primitive data types in Java require 
different amounts of space

•byte: 1 byte

•short: 2 bytes

• int/float: 4 bytes

•double: 8 bytes

Andrew H. Fagg: CS 2334: Binary I/O 3



Characters: 
several options

•ASCII char: 1 byte
•Unicode: 2 bytes
•Extended Unicode: 3 bytes

Andrew H. Fagg: CS 2334: Binary I/O 4



Low Level Files

FileInputStream/FileOutputStream

•Byte-level interface to the file

•read() and write() “think” in terms of arrays 
of bytes to be read and written

Andrew H. Fagg: CS 2334: Binary I/O 5



Character-Level Interaction

BufferedReader/BufferedWriter (you already 
have experience with these):

•Read/write individual characters or entire 
Strings

Andrew H. Fagg: CS 2334: Binary I/O 6



Data-Level Interaction
Want to store primitive types in the file 
without having to deal directly at the byte 
level
•DataInputStream/DataOutputStream

•readShort(), readLong(), readDouble()
•writeShort(), writeLong(), writeDouble()

•You must keep track of the sequence that 
these primitive values are stored in

Andrew H. Fagg: CS 2334: Binary I/O 7



DataInputStream/DataOutputStream example

Andrew H. Fagg: CS 2334: Binary I/O 8



Buffering

•For hard disks, we tend to not read/write 
individual bytes, but instead read/write 
entire blocks of bytes

•This makes access performance much better

Andrew H. Fagg: CS 2334: Binary I/O 9



Buffering

Java exposes this to us to a small degree: we 
can wrap a BufferedOutputStream around a 
FileOutputStream

•Many variables may be written to the “file”, 
but only occasionally are these written out to 
the disk

•Added method: flush() – forces all buffered 
bytes to be written immediately

Andrew H. Fagg: CS 2334: Binary I/O 10



Object-Level Interaction 

ObjectInputStream/ObjectOutputStream

•Can read/write entire objects in one call

•Class must implement the Serializable
interface
•Marker interface: we don’t have to implement 

anything

•Read/Write is recursive
• If an object contains references to other objects –

they are read/written, too

Andrew H. Fagg: CS 2334: Binary I/O 11



Object-Level Interaction 

Example…

Andrew H. Fagg: CS 2334: Binary I/O 12



Very Recursive

Collection demonstration

Andrew H. Fagg: CS 2334: Binary I/O 13



Very Recursive

When we write/read an object:

•All of the contents are written/read, 
including other objects

•Copy stops before we make multiple copies 
of objects

•Can keep a variable from being written using 
the transient keyword

Andrew H. Fagg: CS 2334: Binary I/O 14



More about Serializable

•To be written to an ObjectOutputStream, a 
class must implement Serializable

•All variables must also be primitive, 
Serializable or transient
•Same for their children…

•Class data are not included with objects

Andrew H. Fagg: CS 2334: Binary I/O 15



End of File

•Finding when you’ve reached the end of the 
file is problematic in Java

•Many read() methods will return a special 
value to indicate that the end of file has been 
reached

•For DataInputStream and 
ObjectInputStream: the EOFException will be 
thrown



Critical Idea

•Must match data format in input and output 
operations
• If you write it as a byte, you read it as a byte
• If you write UTF-8, you read UTF-8
• If you write characters, you read characters

•Order is important because streams are 
sequential



Andrew H. Fagg: CS 2334: Binary I/O 18


