
Classes, Objects, and UML

Andrew H. Fagg: CS 2334: Classes and Objects 1

Notes

•ACM programming competition team
•Tuesdays 3-6 NY Pizza
•Thursdays 3-4 DEH 220

•Labs and Projects: Specifications matter
•Class and method names
•Methods must do what they are supposed to do

(no more, no less)
•Must export entire lab folder (not pieces)

Andrew H. Fagg: CS 2334: Classes and Objects 2

Java Objects
Class: a means of creating new types

•Group data elements that describe some
abstract concept

•These data elements can be primitive data or
other objects

•This is an important way to organize your
data – and hence your coding!

Andrew H. Fagg: CS 2334: Classes and Objects 3

Java Objects
An object is one instance of a class

•Occupies a block of memory containing the
values of the data elements

•Each instance has its own memory

•The set of values is called the state of the
object

Andrew H. Fagg: CS 2334: Classes and Objects 4

Java Objects

•Identity: the reference to an object
•Address in memory where the object is stored
•Each instance has its own address

•Behavior: class defines the legal ways to
change the object’s state
•There may be no methods to do so (e.g. String,

Integer, Float classes). These are called immutable
•There may be many methods that change the

object’s state (e.g. StringBuffer class)

Andrew H. Fagg: CS 2334: Classes and Objects 5

Examples

•What is the state of a StringBuffer object?

•How can the state of the StringBuffer object
be changed?

(StringBuffer API)

Andrew H. Fagg: CS 2334: Classes and Objects 6

Examples

What is the state for Date?

Andrew H. Fagg: CS 2334: Classes and Objects 7

Instance Methods

Instance methods describe the behavior of
objects

•Accessors: Methods used to report the state
of objects (including getters)

•Mutators: Methods used to change the state
of objects (including setters)

Syntax: object.method(parameters)

Andrew H. Fagg: CS 2334: Classes and Objects 8

A Class is a Contract

•Classes can construct objects

•All operations on an object: must always
leave the object in a consistent state
•Enforce through variable visibility and through

methods

•Best practice:
•On entry to a method: assume that the object is

in a consistent state
•On exit, ensure that it is still consistent

Andrew H. Fagg: CS 2334: Classes and Objects 9

Examples

Find examples of accessors and mutators in
StringBuffer

•TopHat exercise

•And String

Andrew H. Fagg: CS 2334: Classes and Objects 10

Examples

What would an inconsistent state be for a
Triangle object?

•Properties: height, width, area

Andrew H. Fagg: CS 2334: Classes and Objects 11

A Class as an “Encapsulater”

•A class hides many details from the outside
world

•The user of a class only has to worry about
the class’ public interface
•Easier to understand how to use the class
•The implementation of the underlying class can

change without the user knowing

Andrew H. Fagg: CS 2334: Classes and Objects 12

Unified Modeling Language (UML)

Book

-title: String

-author: String

-isbn: String

+Book(myAuthor: String, myTitle: String, myISBN: String)

+getTitle(): String

+getAuthor(): String

+getISBN(): String

Andrew H. Fagg: CS 2334: Review 13

Unified Modeling Language (UML)

Let’s implement this class

Book

-title: String

-author: String

-isbn: String

+Book(myAuthor: String, myTitle: String, myISBN: String)

+getTitle(): String

+getAuthor(): String

+getISBN(): String

Andrew H. Fagg: CS 2334: Review 14

UML Class Diagrams

•Unified Modeling Language

•Name of class at top

•Middle section contains data
• Name: type

•Bottom section contains methods
• Name(param1: type, param2: type…): return type

•Plus (+) means public

•Minus (-) means private

Andrew H. Fagg: CS 2334: Classes and Objects 15

Unified Modeling Language (UML)

Umlet tool:

http://www.umlet.com/changes.htm

Andrew H. Fagg: CS 2334: Review 16

http://www.umlet.com/changes.htm

Next Classes

•Lab 2: Testing and debugging existing classes
•Due Friday

•Next Wednesday:
•Classes continued
•File I/O

Andrew H. Fagg: CS 2334: Classes and Objects 17

Classes & Objects (continued)

Andrew H. Fagg: CS 2334: Classes and Objects 18

•Lab 2 grading is underway

•Lab 3 and project 1 go out this week

•Team assignments (for projects) will be done
by the end of the day on Thursday

Andrew H. Fagg: CS 2334: Classes and Objects 19

Public vs Private Data

Can be a tough decision.
•What are the pros & cons?

Andrew H. Fagg: CS 2334: Classes and Objects 20

Public vs Private Data

•Public Pros:
•Easy access to all data by other classes
•Don’t have to implement getters and setters

•Public Cons:
•Can’t protect the data from other classes – easy

to get into an inconsistent state
•Therefore, the class cannot make any guarantees

about how it behaves

Andrew H. Fagg: CS 2334: Classes and Objects 21

Instance vs Class Data

•Each object gets its own copy of instance
data

•All objects in a class share one copy of class
data
• In UML, class variables are underlined

Andrew H. Fagg: CS 2334: Classes and Objects 22

Example

•Suppose we were going to design a post-it
note application

•What is the state of the Note?

•How might the state be changed?
• Let’s make UML for this…

Andrew H. Fagg: CS 2334: Classes and Objects 23

Example

How are we going to store things like the
number of characters that are allowed in the
note?

•Why is instance data not appropriate for
this?

Andrew H. Fagg: CS 2334: Classes and Objects 24

Class Variables

Only one copy of the variables for all instances
in the class

•Declare as static:
private static final int maxCharacters = 100;

private static int numNotes = 0;

Andrew H. Fagg: CS 2334: Classes and Objects 25

Class Methods

•Class-level methods are labeled static in Java

•Invocation (execution):

Class.methodName(parameters)

•Examine Math class on Java API

•How is Math different from String?

Andrew H. Fagg: CS 2334: Classes and Objects 26

Class Methods

•Class methods have no access to instance
data

•Examine toString() in Integer class for both
instance and class methods

•In UML, class methods are underlined

Andrew H. Fagg: CS 2334: Classes and Objects 27

Instance Methods

•Always are called with respect to an object
instance

•Can “see” both instance and class variables

Andrew H. Fagg: CS 2334: Classes and Objects 28

Parameter Passing

Primitive data types:

•Value gets copied (pass by value)

•Changes made in method don’t affect the
calling method
•Except when a value is explicitly returned

•A reference is a primitive data type

Andrew H. Fagg: CS 2334: Classes and Objects 29

Parameter Passing

Objects:

•References are passed by value

•But: inside and outside the method, the
reference refers to the same memory
location

•So: changes to data by the called method are
visible to the calling method
•True for both primitive data and objects inside

the object

Andrew H. Fagg: CS 2334: Classes and Objects 30

Method Overloading

Overloading: using the same method name,
but different parameters

•Common when we want to assume default
parameters

•or when different types convey similar types
of information

public void addValue(int val);

public void addValue(double val);

Andrew H. Fagg: CS 2334: Classes and Objects 31

“this"

•The “this” keyword is a reference that refers
to the object on which an instance method
was called on

•Can also refer to a constructor

Andrew H. Fagg: CS 2334: Classes and Objects 32

“this” Referring to the Called Object

class Person{

private String name;

private int age;

public Person(String name, int age){

this.name = name;

this.age = age;

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 33

“this” as a Constructor
class Person{

private String name;

private int age;

public Person(String name, int age){

this.name = name;

this.age = age;

}

public Person(String name){

this(name, 20);

}

public Person(){

this(“Bob”, 42);

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 34

Classes within Classes

•One of the “big wins” with object-oriented
programming is that we can define classes
hierarchically

•Now that we have a “Person”, we can create
new classes that contain Persons

Andrew H. Fagg: CS 2334: Classes and Objects 35

Classes within Classes
class Course {

private int courseNumber;

private Person instructor;

private ArrayList<Person> teachingAssistants;

private ArrayList<Person> students;

:

:

}

Andrew H. Fagg: CS 2334: Classes and Objects 36

Classes within Classes

Constructor is responsible for initializing
underlying classes…
class Course {

private int courseNumber;

private Person instructor;

private ArrayList<Person> teachingAssistants;

private ArrayList<Person> students;

public Course(){

teachingAssistants = new ArrayList<Person>();

students = new ArrayList<Person>();

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 37

Classes within Classes
Constructors can use the default constructor to
handle some initialization
class Course {

:

public Course(){

teachingAssistants = new ArrayList<Person>();

students = new ArrayList<Person>();

}

public Course(int courseNumber, Person instructor)
{

this();

this.courseNumber = courseNumber;

this.instructor = instructor;

}

:

} Andrew H. Fagg: CS 2334: Classes and Objects 38

Andrew H. Fagg: CS 2334: Classes and Objects 39

Next Classes

•Lab 3: Reading a CSV file
•Due Friday

•Project 1: Reading and processing weather
data
•Due in 2 weeks
•Team assignments coming

•Next Monday:
• Inheritance and polymorphism

Andrew H. Fagg: CS 2334: Classes and Objects 40

Andrew H. Fagg: CS 2334: Classes and Objects 41

