

# Classes, Objects, and UML

# Notes

- ACM programming competition team
  - Tuesdays 3-6 NY Pizza
  - Thursdays 3-4 DEH 220
- Labs and Projects: Specifications matter
  - Class and method names
  - Methods must do what they are supposed to do (no more, no less)
  - Must export entire lab folder (not pieces)

# Java Objects

Class: a means of creating new types

- Group data elements that describe some abstract concept
- These data elements can be primitive data or other objects
- This is an important way to organize your data – and hence your coding!

# Java Objects

An object is one instance of a class

- Occupies a block of memory containing the values of the data elements
- Each instance has its own memory
- The set of values is called the *state* of the object

# Java Objects

- Identity: the reference to an object
  - Address in memory where the object is stored
  - Each instance has its own address
- Behavior: class defines the legal ways to change the object's state
  - There may be no methods to do so (e.g. String, Integer, Float classes). These are called *immutable*
  - There may be many methods that change the object's state (e.g. StringBuffer class)

# Examples

- What is the state of a `StringBuffer` object?
- How can the state of the `StringBuffer` object be changed?

(`StringBuffer` API)

# Examples

What is the state for Date?

# Instance Methods

Instance methods describe the behavior of objects

- Accessors: Methods used to report the state of objects (including *getters*)
- Mutators: Methods used to change the state of objects (including *setters*)

Syntax: `object.method(parameters)`

# A Class is a Contract

- Classes can construct objects
- All operations on an object: must **always** leave the object in a consistent state
  - Enforce through variable visibility and through methods
- Best practice:
  - On entry to a method: assume that the object is in a consistent state
  - On exit, ensure that it is still consistent

# Examples

Find examples of accessors and mutators in  
StringBuffer

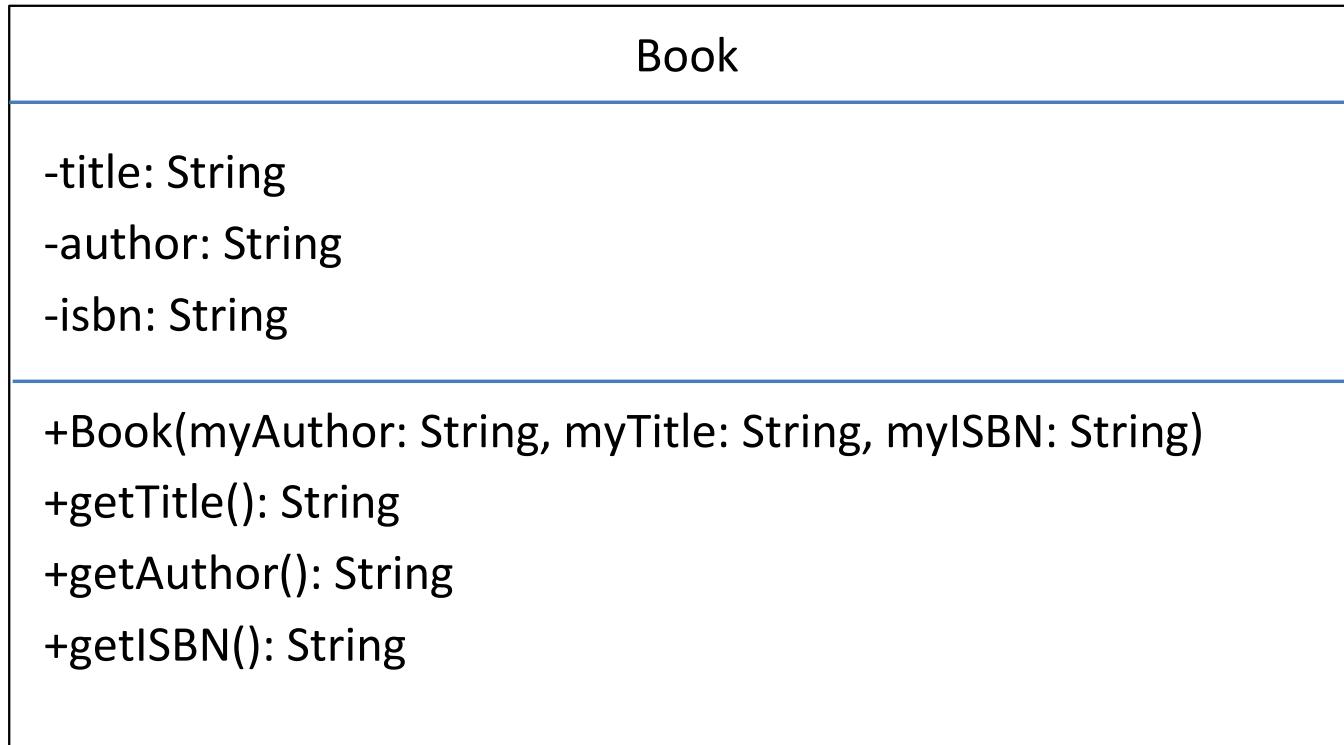
- TopHat exercise
- And String

# Examples

What would an inconsistent state be for a Triangle object?

- Properties: height, width, area

# A Class as an “Encapsulater”


- A class hides many details from the outside world
- The user of a class only has to worry about the class' public interface
  - Easier to understand how to use the class
  - The implementation of the underlying class can change without the user knowing

# Unified Modeling Language (UML)



# Unified Modeling Language (UML)

Let's implement this class



# UML Class Diagrams

- Unified Modeling Language
- Name of class at top
- Middle section contains data
  - Name: type
- Bottom section contains methods
  - Name(param1: type, param2: type...): return type
- Plus (+) means public
- Minus (-) means private

# Unified Modeling Language (UML)

Umlet tool:

<http://www.umlet.com/changes.htm>

# Next Classes

- Lab 2: Testing and debugging existing classes
  - Due Friday
- Next Wednesday:
  - Classes continued
  - File I/O

# Classes & Objects (continued)

- Lab 2 grading is underway
- Lab 3 and project 1 go out this week
- Team assignments (for projects) will be done by the end of the day on Thursday

# Public vs Private Data

Can be a tough decision.

- What are the pros & cons?

# Public vs Private Data

- Public Pros:
  - Easy access to all data by other classes
  - Don't have to implement getters and setters
- Public Cons:
  - Can't protect the data from other classes – easy to get into an inconsistent state
  - Therefore, the class cannot make any guarantees about how it behaves

# Instance vs Class Data

- Each object gets its own copy of *instance data*
- All objects in a class share one copy of *class data*
  - In UML, class variables are underlined

# Example

- Suppose we were going to design a post-it note application
- What is the state of the Note?
- How might the state be changed?
  - Let's make UML for this...

# Example

How are we going to store things like the number of characters that are allowed in the note?

- Why is instance data not appropriate for this?

# Class Variables

Only one copy of the variables for all instances in the class

- Declare as static:

```
private static final int maxCharacters = 100;  
private static int numNotes = 0;
```

# Class Methods

- Class-level methods are labeled **static** in Java

- Invocation (execution):

`Class.methodName (parameters)`

- Examine Math class on Java API

- How is Math different from String?

# Class Methods

- Class methods have no access to instance data
- Examine `toString()` in `Integer` class for both instance and class methods
- In UML, class methods are underlined

# Instance Methods

- Always are called with respect to an object instance
- Can “see” both instance and class variables

# Parameter Passing

Primitive data types:

- Value gets copied (pass by value)
- Changes made in method don't affect the calling method
  - Except when a value is explicitly returned
- A reference is a primitive data type

# Parameter Passing

## Objects:

- References are passed by value
- But: inside and outside the method, the reference refers to the same memory location
- So: changes to data by the called method are visible to the calling method
  - True for both primitive data and objects inside the object

# Method Overloading

Overloading: using the same method name, but different parameters

- Common when we want to assume default parameters
- or when different types convey similar types of information

```
public void addValue(int val);  
public void addValue(double val);
```

# “this”

- The “this” keyword is a reference that refers to the object on which an instance method was called on
- Can also refer to a constructor

# “this” Referring to the Called Object

```
class Person{  
    private String name;  
    private int age;  
  
    public Person(String name, int age) {  
        this.name = name;  
        this.age = age;  
    }  
}
```

# “this” as a Constructor

```
class Person{  
    private String name;  
    private int age;  
  
    public Person(String name, int age) {  
        this.name = name;  
        this.age = age;  
    }  
  
    public Person(String name) {  
        this(name, 20);  
    }  
  
    public Person() {  
        this("Bob", 42);  
    }  
}
```

# Classes within Classes

- One of the “big wins” with object-oriented programming is that we can define classes hierarchically
- Now that we have a “Person”, we can create new classes that contain Persons

# Classes within Classes

```
class Course {  
    private int courseNumber;  
    private Person instructor;  
    private ArrayList<Person> teachingAssistants;  
    private ArrayList<Person> students;  
  
    :  
    :  
}
```

# Classes within Classes

Constructor is responsible for initializing underlying classes...

```
class Course {  
    private int courseNumber;  
    private Person instructor;  
    private ArrayList<Person> teachingAssistants;  
    private ArrayList<Person> students;  
  
    public Course() {  
        teachingAssistants = new ArrayList<Person>();  
        students = new ArrayList<Person>();  
    }  
}
```

# Classes within Classes

Constructors can use the default constructor to handle some initialization

```
class Course {  
    :  
    public Course() {  
        teachingAssistants = new ArrayList<Person>();  
        students = new ArrayList<Person>();  
    }  
  
    public Course(int courseNumber, Person instructor)  
    {  
        this();  
        this.courseNumber = courseNumber;  
        this.instructor = instructor;  
    }  
    :  
}
```



# Next Classes

- Lab 3: Reading a CSV file
  - Due Friday
- Project 1: Reading and processing weather data
  - Due in 2 weeks
  - Team assignments coming
- Next Monday:
  - Inheritance and polymorphism

