Exceptions

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten



Challenges to Building Robust Software

Software will often be used in conditions that
you (the designer) cannot precisely anticipate

* A user might enter data that is incorrect

* A user programmer might create or
manipulate objects in incorrect ways

* Programmatic operations might fail
*System errors might occur

We need to address all of these



Techniques for Highlighting Errors



Techniques for Highlighting Errors

When an error in a method occurs, we can use:

*System.out.printin()

* Create a log file that keeps track of every important
event/operation inside your code (including
errors). Log4l is a tool for doing this...

*Return a value that indicates an error
*System.exit(): halt execution of your program



Techniques for Highlighting Errors

*System.out.printin()

* Create a log file that keeps track of every important
event/operation inside your code (including
errors). Log4l is a tool for doing this...

*Return a value that indicates an error
*System.exit(): halt execution of your program

None of these techniques allows a program to
robustly take corrective action



Exceptions

*You have already seen some exceptions...



Exceptions

*You have already seen some exceptions...
* NullPointerException
* IndexOutOfBoundsException
* |OException

*These cause your program to halt

 Show the file and line number where the failure
occurred

* Show the “stack trace” — the nested list of
method calls that has brought us to the failure



Examples

*Operations on uninstantiated objects
*Creating arrays of negative size



Example Analysis

In these examples:
*The exception causes a halt to the program

*In our array size example:

* Entry of data happens in one method
* But the program halts in another method. These
can be very far apart in large programs

*Want our code to address as many errors as
possible



Syntax

try
{

// some code that could throw an exception

}

catch (ExceptionName e)

{
// Fix the problem here

J

If you’re not going to fix the problem there is no
reason to catch the Exception



Throwing Exceptions

When an Exception is thrown:
*Execution stops immediately

*JVM examines the call stack for a matching
catch statement

e Execution continues within the body of the
matching catch statement

*Then: execution continues after the try-catch



Throwing Exceptions

*The catch statement should be placed at a
point where the program can address the
issue (we call this handling the exception)

* Exceptions not caught within the method
cause the search to continue in the next
higher method

*Exceptions not caught by any method in the
call stack cause the program to halt



Hierarchy of Exception Classes

Object

*Throwable

* Exception

* RuntimeException
* NullPointerException
* ArithmeticException
* ArraylndexOutOfBoundsException

* |OException
*Error



Error Class

*See API

*When these occur, we generally accept that
we cannot recover

*Instead, we try to gracefully clean things up
before halting
 Save critical data to files
* Alert the user



RuntimeException

Most often caused by programming errors

*Unchecked exception: we don’t have to
explicitly address these in code unless we
want to (so, no “throws” statements
necessary)

e Usually a sign that we need to debug our
code

*Example: ArrayList API (get, set)



Not RuntimeExceptions

* All exceptions that are not
RuntimeExceptions are checked exceptions

* Any method that can throw one of these
exceptions must declare this in the method
prototype (throws NameOfException)

* Any method that calls one of these methods:
* Must address the exception with a try/catch
*or also throw the exception



Creating Our Own Exceptions

*Only create a new exception if there isn’t
already one that does the job

e Extend an existing class

* Often Exception or RuntimeException
* Which is best?

*Implement the constructors
*Can add our own data!



Back to: Prompting the User for an
Array Size

*Create an lllegalSizeException
*Prompt the user for a size

*If the given value is non-positive, then throw
our new Exception

*When the Exception is received, then keep
prompting for an array size



Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?



Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?

*\We can also throw an exception under these
conditions



Best Practices

*Don’t overuse Exceptions:

* If your code can detect and address the error
right then and there, don’t throw

* Only use if interrupting the flow of the code is the
right way to address the problem

*Only introduce new Exception classes when
necessary

*|f you are receiving unchecked exceptions,
then address the bug — don’t ask your code
to recover



Multiple Catch Blocks

e Searched in order
* First one to match “wins” and no others are checked

try

{

}

catch (RunTimeException e)

{

}

catch (ArithmeticException e)
{

}



Finally Blocks: Cleaning Up

Guaranteed to execute finally block after the try block:
* Even if an exception occurs within the try
e Even if the try includes a “return”

try

{

}

catch (RunTimeException e)
{

}

finally

{

}



Rethrowing Exceptions

Sometimes your catch can’t address the Exception
* Rethrow original Exception object
*or create a new one to throw...

try

{

}
catch (RunTimeException e)

{

throw e;

or
throw new MyException (“foo”);

J



Examples: File I/O

*BufferedReader: see readLine()
*Double: see: valueOf(String)



Andrew H. Fagg: CS 2334: Exceptions

26



