
Exceptions

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten

Andrew H. Fagg: CS 2334: Exceptions 1

Challenges to Building Robust Software

Software will often be used in conditions that
you (the designer) cannot precisely anticipate

•A user might enter data that is incorrect

•A user programmer might create or
manipulate objects in incorrect ways

•Programmatic operations might fail

•System errors might occur

We need to address all of these
Andrew H. Fagg: CS 2334: Exceptions 2

Techniques for Highlighting Errors

Andrew H. Fagg: CS 2334: Exceptions 3

Techniques for Highlighting Errors

When an error in a method occurs, we can use:

•System.out.println()
•Create a log file that keeps track of every important

event/operation inside your code (including
errors). Log4J is a tool for doing this…

•Return a value that indicates an error

•System.exit(): halt execution of your program

Andrew H. Fagg: CS 2334: Exceptions 4

Techniques for Highlighting Errors

•System.out.println()
•Create a log file that keeps track of every important

event/operation inside your code (including
errors). Log4J is a tool for doing this…

•Return a value that indicates an error

•System.exit(): halt execution of your program

None of these techniques allows a program to
robustly take corrective action

Andrew H. Fagg: CS 2334: Exceptions 5

Exceptions

•You have already seen some exceptions…

Andrew H. Fagg: CS 2334: Exceptions 6

Exceptions

•You have already seen some exceptions…
•NullPointerException
• IndexOutOfBoundsException
• IOException

•These cause your program to halt
•Show the file and line number where the failure

occurred
•Show the “stack trace” – the nested list of

method calls that has brought us to the failure

Andrew H. Fagg: CS 2334: Exceptions 7

Examples

•Operations on uninstantiated objects

•Creating arrays of negative size

Andrew H. Fagg: CS 2334: Exceptions 8

Example Analysis

In these examples:

•The exception causes a halt to the program

•In our array size example:
•Entry of data happens in one method
•But the program halts in another method. These

can be very far apart in large programs

•Want our code to address as many errors as
possible

Andrew H. Fagg: CS 2334: Exceptions 9

Syntax

try

{

// some code that could throw an exception

}

catch (ExceptionName e)

{

// Fix the problem here

}

If you’re not going to fix the problem there is no
reason to catch the Exception

Andrew H. Fagg: CS 2334: Exceptions 10

Throwing Exceptions

When an Exception is thrown:

•Execution stops immediately

•JVM examines the call stack for a matching
catch statement

•Execution continues within the body of the
matching catch statement

•Then: execution continues after the try-catch

Andrew H. Fagg: CS 2334: Exceptions 11

Throwing Exceptions

•The catch statement should be placed at a
point where the program can address the
issue (we call this handling the exception)

•Exceptions not caught within the method
cause the search to continue in the next
higher method

•Exceptions not caught by any method in the
call stack cause the program to halt

Andrew H. Fagg: CS 2334: Exceptions 12

Hierarchy of Exception Classes

Object

•Throwable
•Exception

• RuntimeException
• NullPointerException

• ArithmeticException

• ArrayIndexOutOfBoundsException

• IOException

•Error

Andrew H. Fagg: CS 2334: Exceptions 13

Error Class

•See API

•When these occur, we generally accept that
we cannot recover

•Instead, we try to gracefully clean things up
before halting
•Save critical data to files
•Alert the user

Andrew H. Fagg: CS 2334: Exceptions 14

RuntimeException

Most often caused by programming errors

•Unchecked exception: we don’t have to
explicitly address these in code unless we
want to (so, no “throws” statements
necessary)

•Usually a sign that we need to debug our
code

•Example: ArrayList API (get, set)

Andrew H. Fagg: CS 2334: Exceptions 15

Not RuntimeExceptions

•All exceptions that are not
RuntimeExceptions are checked exceptions

•Any method that can throw one of these
exceptions must declare this in the method
prototype (throws NameOfException)

•Any method that calls one of these methods:
•Must address the exception with a try/catch
•or also throw the exception

Andrew H. Fagg: CS 2334: Exceptions 16

Creating Our Own Exceptions

•Only create a new exception if there isn’t
already one that does the job

•Extend an existing class
•Often Exception or RuntimeException
•Which is best?

•Implement the constructors

•Can add our own data!

Andrew H. Fagg: CS 2334: Exceptions 17

Back to: Prompting the User for an
Array Size

•Create an IllegalSizeException

•Prompt the user for a size

•If the given value is non-positive, then throw
our new Exception

•When the Exception is received, then keep
prompting for an array size

Andrew H. Fagg: CS 2334: Exceptions 18

Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?

Andrew H. Fagg: CS 2334: Exceptions 19

Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?

•We can also throw an exception under these
conditions

Andrew H. Fagg: CS 2334: Exceptions 20

Best Practices

•Don’t overuse Exceptions:
• If your code can detect and address the error

right then and there, don’t throw
•Only use if interrupting the flow of the code is the

right way to address the problem

•Only introduce new Exception classes when
necessary

•If you are receiving unchecked exceptions,
then address the bug – don’t ask your code
to recover

Andrew H. Fagg: CS 2334: Exceptions 21

Multiple Catch Blocks

• Searched in order
• First one to match “wins” and no others are checked

try

{

}

catch (RunTimeException e)

{

}

catch (ArithmeticException e)

{

}

Andrew H. Fagg: CS 2334: Exceptions 22

Finally Blocks: Cleaning Up

Guaranteed to execute finally block after the try block:

• Even if an exception occurs within the try

• Even if the try includes a “return”

try

{

}

catch (RunTimeException e)

{

}

finally

{

}

Andrew H. Fagg: CS 2334: Exceptions 23

Rethrowing Exceptions

Sometimes your catch can’t address the Exception
•Rethrow original Exception object
•or create a new one to throw…

try
{
}
catch (RunTimeException e)
{
throw e;
or

throw new MyException(“foo”);
}

Andrew H. Fagg: CS 2334: Exceptions 24

Examples: File I/O

•BufferedReader: see readLine()

•Double: see: valueOf(String)

Andrew H. Fagg: CS 2334: Exceptions 25

Andrew H. Fagg: CS 2334: Exceptions 26

