
Java Generics

Slides derived from the work of

Dr. Amy McGovern and Dr. Deborah Trytten

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 1

Arrays Class

Provides, among other things, static methods
for sorting primitive arrays of different types
(byte, char, int, double)

•Problems with this?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 2

Arrays Class

Problems with this?

•Separate implementation for each type

•Each new type needs a new implementation

Solutions?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 3

Arrays Class

Solutions?

•Could provide a static method that sorts an
array of Objects

•But what does it mean to compare two
arbitrary Objects so that we can establish an
ordering between them?
•For example a String and an Integer?

We really need a way of talking generically
about a homogeneous array of Objects

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 4

Java Generics

•A type becomes a parameter to a class
and/or a method:
public ClassName<T>{

:

}

•T is the variable type that is assigned when
we use the class

•Within the class definition, we can “pretend”
that it is a real type (parameters, variable
declarations and return types)

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 5

GenericQueue example …

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 6

Standard Generic Type Names

•E - Element (used extensively by the Java
Collections Framework)

•K - Key

•N - Number

•T - Type

•V – Value

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 7

Notes

•Lab 7 deadline is Sunday

•No office hours on Friday
•We are still available for appointments and for

email

•Exam II: now on Nov 4 (from Nov 2)

•Project 3 deadline: now Nov 2 (from Nov 4)

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 8

Advantages of Generics

•Code reuse
•ArrayList, Java Collections Framework

•Specific types are checked at compile time
(as opposed to everything having to be an
Object)
•Reduces runtime errors

•Easier to read and understand code when we
can be very explicit about types

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 9

Notes

•Primitive types cannot be used as generic
types
•Must use the wrapper classes

•Type erasure: generics are checked at
compile time, not at runtime
•This decision was driven to maintain backward

compatibility
•Not a serious issue most of the time

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 10

Implications of Type Erasure

•Cannot construct objects of type E
E myData = new E(); // illegal code

•Cannot construct arrays of type E
E[] elements = new E[capacity]; // illegal

•Solution to the latter: create an array of objects
and then cast to array of E

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 11

Implications of Type Erasure

• instanceof() cannot distinguish same class
with different generic, because it is done at
run time
•ArrayList<Integer> and ArrayList<String> are the

same type using instanceof

•Exception classes cannot be generic

•Static data cannot be of a generic type

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 12

Inheritance and Generics

•In many situations, we might have more than
one generic type as part of a class or method
definition

• These could be arbitrary types or we might
want them to have some specific relationship
•For example: we might want T1 to be a superclass

of T2

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 13

Class Hierarchies

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 14

Number

Integer

Object

Double

Class Hierarchies

Integer i = new Integer(42);

Number n = new Integer(1138);

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 15

Number

Integer

Object

Double

Class Hierarchies

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 16

Number

Integer

Object

Double

ArrayList<Number>

ArrayList<Integer>

???

Class Hierarchies

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 17

ArrayList<Number>

ArrayList<Integer>

???

Class Hierarchies

The only common ancestor is Object…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 18

Object

ArrayList<Number>

ArrayList<Integer>

???

ArrayList<Number> ArrayList<Integer>

GenericTest example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 19

Class Hierarchies

The only common ancestor is Object…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 20

Object

ArrayList<Number>

ArrayList<Integer>

???

ArrayList<Number> ArrayList<Integer>

Wildcards

But, there is a hierarchy that we can use…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 21

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

Wildcards

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 22

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

ArrayList<Integer> list1 = new ArrayList<Integer>();

ArrayList<? extends Number> list2 = list1; // Legal

Wildcards

The complement…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 23

ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

Wildcards

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 24

ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

ArrayList<Object> list1 = new ArrayList<Object>();

ArrayList<? super Number> list2 = list1; // Legal

Wildcard Example I

Return to Arrays in Java API
binarySearch(T[] a, T key, Comparator<? super T> c)

•The class that is passed as the third parameter
must implement the Comparator interface or
have a superclass that implements the
Comparator interface

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 25

Wildcard Example II

Examine Collections in Java API: copy list
public static<T> void

copy (List<? super T> dest, List<? extends T> src)

•The <T> before the method name determines the
base type

•The source must be a class that is or extends T

•The destination must be a class that is or is a
superclass of T

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 26

Wildcards and Generic Types

•Give us a tremendous amount of flexibility

•Wildcard types are defined and checked at
compile time
•Reduce runtime errors!

•Project 2: <? extends StatisticsAbstract>

•Lab 7: we will define:
•Generic notion of a Card<T>
•Generic notion of a Deck<E extends Card<T>, T>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 27

