Java Generics

Slides derived from the work of
Dr. Amy McGovern and Dr. Deborah Trytten

Arrays Class

Provides, among other things, static methods
for sorting primitive arrays of different types
(byte, char, int, double)

*Problems with this?

Arrays Class
Problems with this?

*Separate implementation for each type
*Each new type needs a new implementation

Solutions?

Arrays Class

Solutions?

*Could provide a static method that sorts an
array of Objects

*But what does it mean to compare two
arbitrary Objects so that we can establish an
ordering between them?

* For example a String and an Integer?

We really need a way of talking generically
about a homogeneous array of Objects

Java Generics

*A type becomes a parameter to a class
and/or a method:

public ClassName<T>{

*T is the variable type that is assighed when
we use the class

* Within the class definition, we can “pretend”
that it is a real type (parameters, variable
declarations and return types)

GenericQueue example ...

Standard Generic Type Names

*E - Element (used extensively by the Java
Collections Framework)

*K - Key

*N - Number
T - Type

*VV —Value

Notes

*Lab 7 deadline is Sunday

*No office hours on Friday

* We are still available for appointments and for
email

Exam Il: now on Nov 4 (from Nov 2)
*Project 3 deadline: now Nov 2 (from Nov 4)

Advantages of Generics

*Code reuse
* ArrayList, Java Collections Framework

*Specific types are checked at compile time
(as opposed to everything having to be an
Object)

* Reduces runtime errors

eEasier to read and understand code when we
can be very explicit about types

Notes

*Primitive types cannot be used as generic
types

* Must use the wrapper classes
*Type erasure: generics are checked at
compile time, not at runtime
* This decision was driven to maintain backward
compatibility
* Not a serious issue most of the time

Implications of Type Erasure

*Cannot construct objects of type E
E myData = new E(); // illegal code

*Cannot construct arrays of type E
E[] elements = new E[capacity]l; // illegal

* Solution to the latter: create an array of objects
and then cast to array of E

Implications of Type Erasure

einstanceof() cannot distinguish same class
with different generic, because it is done at
run time
* ArrayList<integer> and ArrayList<String> are the
same type using instanceof
*Exception classes cannot be generic

Static data cannot be of a generic type

Inheritance and Generics

*In many situations, we might have more than
one generic type as part of a class or method
definition

* These could be arbitrary types or we might
want them to have some specific relationship

* For example: we might want T1 to be a superclass
of T2

Class Hierarchies

Object

|

Number

T\

Integer | | Double

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

14

Class Hierarchies

Object Integer 1 = new Integer (42);
T Number n = new Integer (1138);
Number

T\

Integer | | Double

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 15

Class Hierarchies

Object

|

Number

T\

ArrayList<Number>

T 2177

ArraylList<integer>

Integer | | Double

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

16

Class Hierarchies

rayList<integer>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 17

Class Hierarchies

rayList<integer>

Object
ArrayList<Number> ArrayList<Integer>

The only common ancestor is Object...

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 18

GenericTest example

Class Hierarchies

rayList<integer>

Object
ArrayList<Number> ArrayList<Integer>

The only common ancestor is Object...

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 20

Wildcards

But, there is a hierarchy that we can use...

ArraylList<?>

1

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

21

Wildcards

ArrayList<Integer> listl = new ArraylList<Integer>();
ArrayList<? extends Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

22

Wildcards

The complement...

ArraylList<?>

1

ArrayList<? super Number>

ArrayList<Object>

ArrayList<Number>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

23

Wildcards

ArraylList<Object> 1listl = new ArrayList<Object>();
ArrayList<? super Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? super Number>

ArrayList<Object>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

ArrayList<Number>

24

Wildcard Example |

Return to Arrays in Java API

binarySearch (T[] a, T key, Comparator<? super T> C)

*The class that is passed as the third parameter
must implement the Comparator interface or
have a superclass that implements the
Comparator interface

Wildcard Example Il

Examine Collections in Java API: copy list

public static<T> void
copy (List<? super T> dest, List<? extends T> src)

*The <T> before the method name determines the
base type

*The source must be a class that is or extends T

*The destination must be a class that is or is a
superclass of T

Wildcards and Generic Types

*Give us a tremendous amount of flexibility

*Wildcard types are defined and checked at
compile time
* Reduce runtime errors!

*Project 2: <? extends StatisticsAbstract>

eLab 7: we will define:
* Generic notion of a Card<T>
* Generic notion of a Deck<E extends Card<T>, T>

