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Arrays Class

Provides, among other things, static methods
for sorting primitive arrays of different types
(byte, char, int, double)

*Problems with this?



Arrays Class
Problems with this?

*Separate implementation for each type
*Each new type needs a new implementation

Solutions?



Arrays Class

Solutions?

*Could provide a static method that sorts an
array of Objects

*But what does it mean to compare two
arbitrary Objects so that we can establish an
ordering between them?

* For example a String and an Integer?

We really need a way of talking generically
about a homogeneous array of Objects



Java Generics

*A type becomes a parameter to a class
and/or a method:

public ClassName<T>{

*T is the variable type that is assighed when
we use the class

* Within the class definition, we can “pretend”
that it is a real type (parameters, variable
declarations and return types)



GenericQueue example ...



Standard Generic Type Names

*E - Element (used extensively by the Java
Collections Framework)

*K - Key

*N - Number
T - Type

*VV —Value



Notes

*Lab 7 deadline is Sunday

*No office hours on Friday

* We are still available for appointments and for
email

Exam Il: now on Nov 4 (from Nov 2)
*Project 3 deadline: now Nov 2 (from Nov 4)



Advantages of Generics

*Code reuse
* ArrayList, Java Collections Framework

*Specific types are checked at compile time
(as opposed to everything having to be an
Object)

* Reduces runtime errors

eEasier to read and understand code when we
can be very explicit about types



Notes

*Primitive types cannot be used as generic
types

* Must use the wrapper classes
*Type erasure: generics are checked at
compile time, not at runtime
* This decision was driven to maintain backward
compatibility
* Not a serious issue most of the time



Implications of Type Erasure

*Cannot construct objects of type E
E myData = new E(); // illegal code

*Cannot construct arrays of type E
E[] elements = new E[capacity]l; // illegal

* Solution to the latter: create an array of objects
and then cast to array of E



Implications of Type Erasure

einstanceof() cannot distinguish same class
with different generic, because it is done at
run time
* ArrayList<integer> and ArrayList<String> are the
same type using instanceof
*Exception classes cannot be generic

Static data cannot be of a generic type



Inheritance and Generics

*In many situations, we might have more than
one generic type as part of a class or method
definition

* These could be arbitrary types or we might
want them to have some specific relationship

* For example: we might want T1 to be a superclass
of T2



Class Hierarchies

Object

|

Number

T\

Integer | | Double
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Class Hierarchies

Object Integer 1 = new Integer (42);
T Number n = new Integer (1138);
Number

T\

Integer | | Double
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Class Hierarchies

Object

|

Number

T\

ArrayList<Number>

T 2177

ArraylList<integer>

Integer | | Double
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Class Hierarchies

rayList<integer>
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Class Hierarchies

rayList<integer>

Object
ArrayList<Number> ArrayList<Integer>

The only common ancestor is Object...
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GenericTest example



Class Hierarchies

rayList<integer>

Object
ArrayList<Number> ArrayList<Integer>

The only common ancestor is Object...
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Wildcards

But, there is a hierarchy that we can use...

ArraylList<?>

1

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>
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Wildcards

ArrayList<Integer> listl = new ArraylList<Integer>();
ArrayList<? extends Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>
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Wildcards

The complement...

ArraylList<?>

1

ArrayList<? super Number>

ArrayList<Object>

ArrayList<Number>
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Wildcards

ArraylList<Object> 1listl = new ArrayList<Object>();
ArrayList<? super Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? super Number>

ArrayList<Object>

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism
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Wildcard Example |

Return to Arrays in Java API

binarySearch (T[] a, T key, Comparator<? super T> C)

*The class that is passed as the third parameter
must implement the Comparator interface or
have a superclass that implements the
Comparator interface



Wildcard Example Il

Examine Collections in Java API: copy list

public static<T> void
copy (List<? super T> dest, List<? extends T> src)

*The <T> before the method name determines the
base type

*The source must be a class that is or extends T

*The destination must be a class that is or is a
superclass of T



Wildcards and Generic Types

*Give us a tremendous amount of flexibility

*Wildcard types are defined and checked at
compile time
* Reduce runtime errors!

*Project 2: <? extends StatisticsAbstract>

eLab 7: we will define:
* Generic notion of a Card<T>
* Generic notion of a Deck<E extends Card<T>, T>



