Inheritance and
Polymorphism

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten



Notes

*Project 1 should be underway already



Sharing Data Between Classes

Aggregation is one way to share data between
classes

*Can only use public parts of the class
Limitation or advantage?



Sharing Data Between Classes

* Another way to share data is inheritance

* New keyword: extends (in class declaration)

* Announced inheritance relationship
* UML: Arrow with open head >

* New keyword: protected (in methods/data)

* Announces that this data item/method is available both
inside the class and to classes that extend this class

*#in UML

*Private data and methods are not available in
subclasses



Example

Online Ordering for Amazon

*Consider the following products and create a
hierarchy
* Products
* Downloadable software
* Software with media
* Books

What is the UML?



Where Do These Properties Belong in
the Hierarchy?

*Price

* URL for downloading software
*Name of item

* Author

*|SBN

*Delivery method

*Shipping costs



eSubclass
e Child class

*Superclass
e Parent class
e Base class

Terminology



Terminology

*Subclasses get all of the public and protected
data and methods from superclass

* May have to implement methods again if we
need more specific behavior

*Exercise: choose a child class from previous
UML and circle everything it should be able
to access



Consider equals()

Have you noticed that equals() works in a
class, even if you didn’t put it there?

public class Equalizer

{

private int data;

public Equalizer(int data)
{

¥

this.data = data;
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Consider equals()

How does the program find an equals method
in the Equalizer class?



Consider equals()

How does the program find an equals method
in the Equalizer class?

*public boolean equals(Object o)



Consider equals()

Exercise:
e Demonstrate that this method is not working

properly
* Why?

*Fix it and demonstrate it
*Draw UML of Equalizer, both before and after



How about toString()

*What does toString() do? Or hashCode()?



Modeling Relationships

*The relationship represented by aggregation
(with the diamond in UML) is “has-a”

*The relationship represented by inheritance
(with the open headed arrow in UML) is “is-a”

* More specialized classes are lower in the
hierarchy



Modeling Relationships

Exercises:

*Example: Shape, Circle, Square, Ellipse,
Rectangle, Quadrilateral
Example: Student, Name, Address, City, State,

Country, First Name, Last Name, Middle
Name



*Day / start
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Inheritance Can be Bad if Done
Incorrectly

*Inheritance is widely used in Java
* And all OOP languages

* Works fabulously in GUI components, and
collections

*Inheritance breaks encapsulation if we use
the protected keyword

* Aggregation and composition do not break
encapsulation



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is private
* Inheritance doesn’t provide the subclass itself
with anything it can’t get through composition

* However: the “user” of a class does get to see a
consistent interface between the super and child
classes



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is protected

* Classes become closely coupled

* Changes in one are likely to causes changes in the
other

* Bad for maintenance (SSS)

* These effects can be mitigated somewhat
through the use of multiple packages



Private or Protected Data”

Choosing private or protected can be a tough
call

* My take: stick with private



Implementing Inheritance: Instance
Methods and Variables

*super.methodName() to call public or
protected methods in the superclass

* For a given class, remember that there is exactly
one superclass because Java does not allow
multiple inheritance

esuper.instanceVariableName() to refer to
public or protected instance variables from
the superclass



Implementing Inheritance:
Constructor

e Constructors are not inherited

*But: can use super() to call the superclass
constructor

* |If used, it must be first statement in subclass
constructors

* Can call any of the constructors associated with
the superclass

* Most constructors call other constructors...



Compiler

*|f you don’t use super(), compiler adds
implicitly for you
* Why?

* All classes that allow inheritance must
provide a no argument constructor

*If you don’t write one, the compiler adds a
default



Overriding Methods

When a subclass implements a method that is
identical to one in the superclass it is
overridden

* Method must be public or protected
*Same name
*Same parameters

eReturn values: new method must return a
subclass of the original method’s return type

eStatic methods cannot be overridden



Inheritance example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple
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Polymorphism

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”



Polymorphism

* Calling methods: Java Virtual Machine will select
data/method based on object type at run time (not
compilation—Why?)

» Search order: constructed class if available, then parent,
then grandparent, etc.

Produce pr = new Applel()
pr.computePrice () ; // Calls Fruit.computePrice ()

*Exercise: show example with Product hierarchy



Down-Casting

The other way can be made to work, but we
need to be explicit:

Apple a = pr; // Compiler disallows

Apple a = (Apple) pr; // Allowed

* Forces java to treat the object as if it is the
subclass

* Lets you access subclasss methods

* If you improperly cast an object, you will receive
Exceptions



Casting and instanceof

instanceof will tell you what class an instance
IS:

1f (pr 1nstanceof Apple) {
Apple a = (Apple) pr;
// Use a...



Primitive Arrays

*The size of a primitive array is fixed

* Could try to plan for the largest array that will be
necessary

* Or need to explicitly extend the primitive array
(as we did with FruitBasket)

*Need some way of having an array that is
automatically expandable as we add new
entries...



ArrayList

*How does it work?
* Formal analysis in data structures

*Examine API (including inheritance)

* Constructors
* Show generic syntax (avoid compiler warnings)

* What is a generic?

* Find accessors

* Find mutators

* Which methods are likely to be expensive?



ArrayList example

Exercise: make an ArrayList of Produce and
Fruit

* What can go in each?

* Printing out the lists



Design Example

* iphone has many apps that relate. Consider:
* Phone
* Mail
* Contacts
* Photos
* Camera

* Let’s design a simple UML to highlight this design
* What are common elements/actions?

* What is unique to each category?

* What is inheritance or aggregation?

* Draw relationships in UML




Immutable Classes and Inheritance

|t is possible to make a class so that it cannot
be inherited from
public final class ClassName

*This must be done with all immutable classes
* Why?
* Again, if unsure, make class final

e Can always remove it later

* Once you let people extend a class, you can’t
make changes



Next Classes

eLab 4: Inheritance
* Due Friday

*Project 1: Reading and processing weather
data

e Duein 1 week

* Monday:
* Exceptions and abstract classes
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