Inheritance and
Polymorphism

Slides derived from the work of Dr. Amy
McGovern and Dr. Deborah Trytten



Notes

*Project 1 should be underway already



Sharing Data Between Classes

Aggregation is one way to share data between
classes

*Can only use public parts of the class
Limitation or advantage?



Sharing Data Between Classes

* Another way to share data is inheritance

* New keyword: extends (in class declaration)

* Announced inheritance relationship
* UML: Arrow with open head >

* New keyword: protected (in methods/data)

* Announces that this data item/method is available both
inside the class and to classes that extend this class

*#in UML

*Private data and methods are not available in
subclasses



Example

Online Ordering for Amazon

*Consider the following products and create a
hierarchy
* Products
* Downloadable software
* Software with media
* Books

What is the UML?



Where Do These Properties Belong in
the Hierarchy?

*Price

* URL for downloading software
*Name of item

* Author

*|SBN

*Delivery method

*Shipping costs



eSubclass
e Child class

*Superclass
e Parent class
e Base class

Terminology



Terminology

*Subclasses get all of the public and protected
data and methods from superclass

* May have to implement methods again if we
need more specific behavior

*Exercise: choose a child class from previous
UML and circle everything it should be able
to access



Consider equals()

Have you noticed that equals() works in a
class, even if you didn’t put it there?

public class Equalizer

{

private int data;

public Equalizer(int data)
{

¥

this.data = data;

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism



Consider equals()

How does the program find an equals method
in the Equalizer class?



Consider equals()

How does the program find an equals method
in the Equalizer class?

*public boolean equals(Object o)



Consider equals()

Exercise:
e Demonstrate that this method is not working

properly
* Why?

*Fix it and demonstrate it
*Draw UML of Equalizer, both before and after



How about toString()

*What does toString() do? Or hashCode()?



Modeling Relationships

*The relationship represented by aggregation
(with the diamond in UML) is “has-a”

*The relationship represented by inheritance
(with the open headed arrow in UML) is “is-a”

* More specialized classes are lower in the
hierarchy



Modeling Relationships

Exercises:

*Example: Shape, Circle, Square, Ellipse,
Rectangle, Quadrilateral
Example: Student, Name, Address, City, State,

Country, First Name, Last Name, Middle
Name



*Day / start

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

16



Inheritance Can be Bad if Done
Incorrectly

*Inheritance is widely used in Java
* And all OOP languages

* Works fabulously in GUI components, and
collections

*Inheritance breaks encapsulation if we use
the protected keyword

* Aggregation and composition do not break
encapsulation



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is private
* Inheritance doesn’t provide the subclass itself
with anything it can’t get through composition

* However: the “user” of a class does get to see a
consistent interface between the super and child
classes



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is protected

* Classes become closely coupled

* Changes in one are likely to causes changes in the
other

* Bad for maintenance (SSS)

* These effects can be mitigated somewhat
through the use of multiple packages



Private or Protected Data”

Choosing private or protected can be a tough
call

* My take: stick with private



Implementing Inheritance: Instance
Methods and Variables

*super.methodName() to call public or
protected methods in the superclass

* For a given class, remember that there is exactly
one superclass because Java does not allow
multiple inheritance

esuper.instanceVariableName() to refer to
public or protected instance variables from
the superclass



Implementing Inheritance:
Constructor

e Constructors are not inherited

*But: can use super() to call the superclass
constructor

* |If used, it must be first statement in subclass
constructors

* Can call any of the constructors associated with
the superclass

* Most constructors call other constructors...



Compiler

*|f you don’t use super(), compiler adds
implicitly for you
* Why?

* All classes that allow inheritance must
provide a no argument constructor

*If you don’t write one, the compiler adds a
default



Overriding Methods

When a subclass implements a method that is
identical to one in the superclass it is
overridden

* Method must be public or protected
*Same name
*Same parameters

eReturn values: new method must return a
subclass of the original method’s return type

eStatic methods cannot be overridden



Inheritance example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

25



Polymorphism

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”



Polymorphism

* Calling methods: Java Virtual Machine will select
data/method based on object type at run time (not
compilation—Why?)

» Search order: constructed class if available, then parent,
then grandparent, etc.

Produce pr = new Applel()
pr.computePrice () ; // Calls Fruit.computePrice ()

*Exercise: show example with Product hierarchy



Down-Casting

The other way can be made to work, but we
need to be explicit:

Apple a = pr; // Compiler disallows

Apple a = (Apple) pr; // Allowed

* Forces java to treat the object as if it is the
subclass

* Lets you access subclasss methods

* If you improperly cast an object, you will receive
Exceptions



Casting and instanceof

instanceof will tell you what class an instance
IS:

1f (pr 1nstanceof Apple) {
Apple a = (Apple) pr;
// Use a...



Primitive Arrays

*The size of a primitive array is fixed

* Could try to plan for the largest array that will be
necessary

* Or need to explicitly extend the primitive array
(as we did with FruitBasket)

*Need some way of having an array that is
automatically expandable as we add new
entries...



ArrayList

*How does it work?
* Formal analysis in data structures

*Examine API (including inheritance)

* Constructors
* Show generic syntax (avoid compiler warnings)

* What is a generic?

* Find accessors

* Find mutators

* Which methods are likely to be expensive?



ArrayList example

Exercise: make an ArrayList of Produce and
Fruit

* What can go in each?

* Printing out the lists



Design Example

* iphone has many apps that relate. Consider:
* Phone
* Mail
* Contacts
* Photos
* Camera

* Let’s design a simple UML to highlight this design
* What are common elements/actions?

* What is unique to each category?

* What is inheritance or aggregation?

* Draw relationships in UML




Immutable Classes and Inheritance

|t is possible to make a class so that it cannot
be inherited from
public final class ClassName

*This must be done with all immutable classes
* Why?
* Again, if unsure, make class final

e Can always remove it later

* Once you let people extend a class, you can’t
make changes



Next Classes

eLab 4: Inheritance
* Due Friday

*Project 1: Reading and processing weather
data

e Duein 1 week

* Monday:
* Exceptions and abstract classes



Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

36



