

# CS 2334: Programming Structures and Abstractions (aka Java 2)

Dr. Andrew H. Fagg

Schools of Computer Science and  
Biomedical Engineering

Teaching assistants:

Daniel Brigance, Richa Saraswat,  
Megan Pinkston, Femi Fashanu

Many of the lecture materials used in this course are derived from the work of  
Dr. Amy McGovern and Dr. Deborah Trytten

# Top Hat

Top Hat intro/signup (before we proceed)

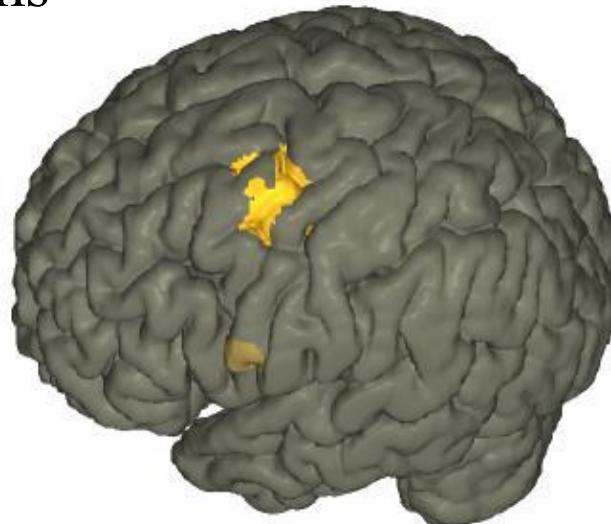
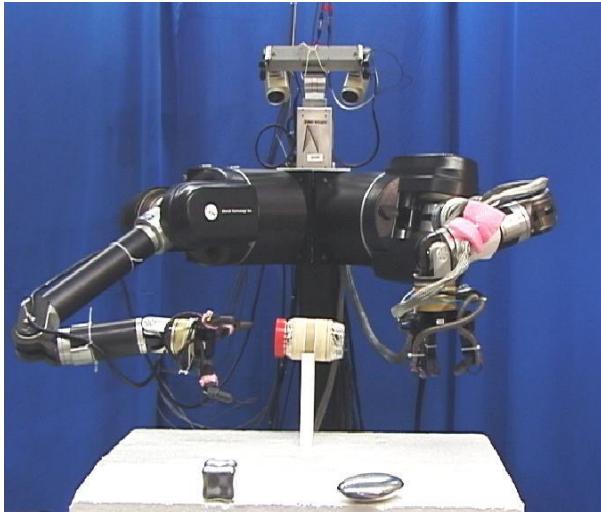
- Use your university email address and ID#
- Today's attendance matters
- If you are not at either of the first two classes, I will drop you from the class
- <https://app.tophat.com/e/462617>

# Top Hat

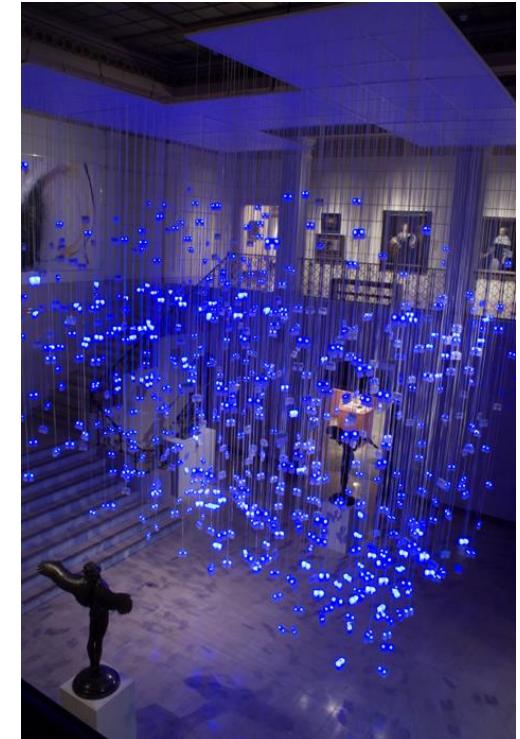
We will use for:

- Interactive exercises
- Graded quizzes
- One way to ask questions during class

I expect all interaction on Top Hat (and the class, in general) to be professional



What do you want to do with  
your CS degree?

# Some Motivation ...


- Driverless cars:
  - <http://www.youtube.com/watch?v=bp9KBrH8H04>
- Coding, the new literacy:
  - <https://www.youtube.com/watch?v=nKJu9yen5nc#t=25>

# Why CS is fun (for me)

- Research areas: robotics, computational neuroscience, machine learning, interactive art
- Interacting with individuals from different disciplines to solve hard problems



Andrew H. Fagg: CS 2334: Introduction



# This software stuff is hard ...

## Why?

# This software stuff is hard ... Why?

Complexity due to:

- Different types of data
- Users are diverse!
- Different use cases
- Different needs
- Code base gets large
- Multiple programmers
- Coordinating many activities at once



# Why Should We Care?

and does it matter that we get it right?

# Why Should We Care?

Does it matter that we get it right?

- Correct and efficient implementation is important to our customers & employers
- Resources are often precious: e.g., data, people, and CPU
- Lives can be at stake (literally)
- We can change the world



**Helping children at risk for Cerebral Palsy learn how to crawl**

Photo credit: Hugh Scott

# This software stuff is hard ...

## How do we get a handle on it?

# Abstraction

# Abstraction

- Abstraction: the process of simplifying the representation or description of some entity
  - Keep the key pieces
  - Throw away the extraneous details
- In software development: we use abstraction to temporarily hide details so that we can “get our mind” around the “big picture”

# Abstraction

Not just one level of abstraction possible: we can imagine multiple levels of abstraction, depending on what we are working on and what we need to communicate

# Course Coverage

- Abstraction!
- Software development
  - Design
  - Implementation
  - Testing
  - Debugging
- Ethics in computer science

# Design

Design: the process of assessing the requirements of a software system and planning a solution

- What are the inputs and outputs?
- What happens in between and how?
- How do we know when our implementation is correct?
- Abstraction is key for many of these steps

# Implementation

- Connecting our design and our implementation
- Maintaining a separation of the logic of our solution from the implementation
- Tools that help us to manage our abstractions

# Testing and Debugging

- Testing procedures are designed (often ahead of time)
- Testing procedures for different pieces of the code base
- Tools that allow us to analyze what our code is doing and what it is “thinking”
- Isolation of “buggy” code

# Ethics in Computer Science

- Processes for detecting and analyzing ethical questions that can arise
- Privacy
- Intellectual property

# My Assumptions About You

- TopHat

# My Assumptions About You

- At least one introductory course in programming
- Experience with java, including:
  - Control structures: if-then-else, while, for, case
  - Basic data types: integers, floats, chars, strings
  - Exposure to java objects

# My Assumptions About You

- Laptop for lab and project work
  - COE requirement
  - Need at least 2 hours of battery life under moderate use
- Top Hat access
  - Can use laptop or phone

# ABET outcomes

- B: An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
- C: An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs
- K: An ability to apply design and development principles in the construction of software systems of varying complexity
- E: An understanding of professional, ethical, legal, security, and social issues and responsibilities.

# Course Details

# Course Information

- Instructor: Dr. Andrew H. Fagg
- Class Location: Dale Hall 206
- Required Resources:
  - Zyante Java programming
  - The **Fourth** Edition of *A Gift of Fire: Social, Legal, and Ethical Issues for Computing and the Internet*
  - *Top Hat*
- Prerequisites: 1323 and Mathematics 1523 or higher, both with a grade of C or higher
- Course web page:  
<http://www.cs.ou.edu/~fagg/classes/cs2334/>

# How to Find Me

- Office: DEH 243
- Office Hours:
  - Monday 3-4
  - Wednesday 11-12
  - Also by appointment
- Contact information:  
[andrewfagg@gmail.com](mailto:andrewfagg@gmail.com)

# How to find the TAs

All office hours in DEH 115 (computer lab)

|                 |                                                                          |                                |
|-----------------|--------------------------------------------------------------------------|--------------------------------|
| Daniel Brigance | <a href="mailto:brigance@ou.edu">brigance@ou.edu</a>                     | W 9-11                         |
| Richa Saraswat  | <a href="mailto:richas@ou.edu">richas@ou.edu</a>                         | T 3-5                          |
| Megan Pinkston  | <a href="mailto:Megan.L.Pinkston-1@ou.edu">Megan.L.Pinkston-1@ou.edu</a> | M 11:30-12:30<br>T 10:30-11:30 |
| Femi Fashanu    | <a href="mailto:femifash@ou.edu">femifash@ou.edu</a>                     | F 12-2                         |

Appointments can also be made

# Course policies

## Due Dates:

- Homework (Zyante exercises): start of class on the day assigned
- Projects: start of class on the due date
- Labs: end of the day on Friday

# Course policies

Late policy:

- Homework and labs cannot be turned in late for credit
- A project may be turned in late for a penalty:
  - 0 - 24 hours: 10%;
  - 24 - 48 hours: 20%
- Quizzes (Top Hat) and exams must be completed in class

# Laptop Policy

- Labs: laptops are required
- Class:
  - May be used to program along with the rest of the class or to take notes
  - May want to use for Top Hat

*If you are using your laptop to in a way to distract people around you in class, you will be asked to leave.*

# Grading

- Projects: 25%
- Labs: 15%
- Exams: 40% (two midterms and a final)
- Homework: 10% (exercises in the Zyante readings)
- Quizzes: 10% (Top Hat)
- Official grades will be posted on D2L

# Projects

- 5 two-week long projects over the semester
- You will need this time
- Projects are done in assigned pairs
- Grading:
  - Sign up for a code review time slot
  - Both group members must be present at the review
  - Both must be ready to answer any questions about the code

# Grading questions

- The item should be first brought to the person who graded it
- All grading questions must be brought to our attention within **one week** of when the item was returned
- Check your grades on D2L
- Once the exam leaves the room that I am in, the grade is final

# Getting the most out of class

- Read materials ahead of time
- Ask questions (in person or in Top Hat)
- Learn names of your fellow students (and use them)
- Participate in class discussions
- Participate in your group discussions
- Attend class regularly
- At the end of the semester, I should know your name

# Appropriate Classroom Conduct

One rule: **Respect**

- Yourself
- Your peers
- The teaching team
  - Keep in mind: we are human, too, and we have many obligations

# Inappropriate Classroom Conduct

- Allowing a cell phone or pager to repeatedly beep audibly.
- Playing music or computer games during class in such a way that they are visible or audible to other class members.
- Exhibiting erratic or irrational behavior.
- Behavior that distracts the class from the subject matter or discussion.
- Making physical or verbal threats to a faculty member, teaching assistant, or class member.
- Refusal to comply with faculty direction.

# Classroom Conduct

- In the case of disruptive behavior, we will ask that you leave the classroom and I may charge you with a violation of the Student Code of Responsibilities and Conduct.
- If you have repeated disruptive issues, I will seek to withdraw you from the class.

# Proper Academic Conduct

Laboratory assignments, homework assignments, quizzes and exams:

- All work must be your own: no looking at or copying solutions from other students or from the net
- General discussion is OK (e.g., the fundamental skills that we are learning)
- When in doubt: ask me or a TA

# Proper Academic Conduct

## Projects:

- All work must be that of your group: no looking at, discussing or copying solutions from other groups or from the net
- General discussion is (again) OK
- Group members must contribute equally to each project

# Proper Academic Conduct

- Sharing solutions is punished to the same degree as receiving solutions
- Make sure that your computer and account are properly protected. Use a good password
- Do not give out access to your account or your computer system
- Do not leave printouts or mobile drives around a laboratory where others might access them

# Proper Academic Conduct

Programming projects will be checked by software designed to detect collaboration. This software is extremely effective and has withstood repeated reviews by the campus judicial processes.

# What happens if you cheat...

- Upon the first documented occurrence of collaborative work, I will report the academic misconduct to the Campus Judicial Coordinator. The procedure to be followed is documented in the University of Oklahoma Academic Misconduct Code
  - [http://integrity.ou.edu/files/Academic\\_Misconduct\\_Code.pdf](http://integrity.ou.edu/files/Academic_Misconduct_Code.pdf)
- In the unlikely event that I elect to admonish the student, the appeals process is described at:
  - <http://integrity.ou.edu/>

# This Week...

- Homework: complete Catme survey no later than Friday evening (you should have received email)
- Next time: 1323 review
- Lab: JDK, Compiling, Javadoc, Eclipse, Strings
  - Exercise is due on Friday evening