*Project 3: code reviews due today
*Project 4: due Wednesday
*Project 5: discussion




Code Craft



Recursion



*Elephants...



Solving Big Problems

How do we solve big problems in CS?



Solving Big Problems

How do we solve big problems in CS?

*Break into smaller problems and solve each of
these

*Then, put the pieces back together

In many cases, the structure of these smaller
problems looks a lot like that of the original one



Self-Similarity

This self-similar structure suggests a certain
type of tool: recursion

*Re-use same code at each level

*This means that we will be writing methods
that call themselves!



Implementing Recursive Methods

What pieces of code do we need?



Implementing Recursive Methods

What pieces of code do we need?

*How to break up a big problem into smaller
pleces

*How to put each sub-solution back together

*Recognizing when the problem is small
enough that we can solve easily in code
(without a recursive call)



Implementing Recursive Methods

Within the method, you have two essential
cases:

*Base case: small problem that we solve
directly

* This must be well defined!

*Recursive case: break into smaller problems
and call recursive method on these

Before you implement, identify these cases!



Example: Evaluating Expressions



Example: Building Fractals



Example: N choose K



Notes

* Method calls require a certain amount of
“overhead”
*Time and memory

* Any algorithm that is implemented as a loop
can also be implemented recursively
* Would we want to do this?



Notes

How about the other way around: can any
recursive algorithm be implemented with a
loop?



Notes

How about the other way around: can any
recursive algorithm be implemented with a

loop?
*Yes: but you would also need a stack data

structure to keep track of all of the work left
to do

*Note that method calls are stack operations



Efficiency Choices

Loop versus recursion

*The choice comes down to your specific
situation

*In general:

* Loops are more efficient with respect to time and
memory, but need more work

* Recursion is often more elegant, but can cost
time and memory



Other Recursion Examples

*Find all files in a directory whose name
contains a specific sequence of characters

*Towers of Hanoi
*String parsing
*Parsing programs (compilers)

*Sorting
* Quicksort
* Mergesort



Example Merge Sort



Example Merge Sort

e Cut array into two halves
*Sort each half (recursive call)
* Merge the two arrays back together

What is the base case?



Merge Sort: Analysis

*What is the best case for merge sort?
*What is the worst case?

*How well does this algorithm do with data
that is already sorted (completely or
partially)?

Merge sort is one of the most efficient
implementations of sort



Merge Sort: Analysis

Fundamental problem:

*We need a lot of extra memory (equal to the
number of elements to be sorted)



Quicksort

*Perform operations within the original array
*Only ~ log2(n) of extra space



Quicksort

Sorting a sub-array between indices i and j

*Pick one of the values to be the pivot
* Could be x[i] or could be x[(i+j)/2]

*As long as x[i] <= pivot, increment i

*As long as x[j] >= pivot, decrement |
*Swap elements i & |

*Repeat until i & j cross

*Now have two sub-arraysi..candc+l ...
*Sort each separately



Quicksort Analysis

*What is the best case for quicksort?
*What is the worst case?

*How well does this algorithm do with data
that is already sorted (completely or
partially)?



Quicksort Analysis

* Average case: better than merge sort
*Worst case: worse than merge sort



Recursion Wrap-Up

*Recursion is a key tool in CS
* Requires practice

It isn’t a tool for every problem
* Often a loop will do the job. In these cases, use
the loop

*If you do recursion: don’t forget the base
cases!



Andrew H. Fagg: CS 2334: Recursion

28



