CS 2334
Project 2: Class Abstractions

September 28, 2015

Due: 1:29 pm on Wednesday, Oct 14, 2015

Introduction

In project 1, you had your first exposure to an Oklahoma Mesonet data set. Here, the
data were relatively clean (though some samples were not valid) and you computed
statistics over the days within a month and the months within some larger data set.
In this project, we will substantially expand the data set by adding new Observation
types, multiple stations, and multiple months within a year. In addition, the data
will not be so clean — there will be some months in which certain Observation types
are never valid.
Your final product will:

1. Query the user for a Mesonet station (single station or all can be selected)
2. Query the user for a year (single year or all can be selected)
3. Report the statistics of the specified data set

In order to simplify our implementation, we will make heavy use of class abstrac-
tions. In addition, we will make use of Exceptions to ensure that the user interaction
is robust. You will also engage in a process of refactoring, where an original code
base (in our case, from project 1) is reorganized to simplify and extend the imple-
mentation.



Learning Objectives

By the end of this project, you should be able to:

1.

A

Make an interactive menu for a user and handle errors in input
Automatically load a set of files in a directory (folder)

Create and use abstract objects and interfaces in appropriate ways
Make use of polymorphism in code

Continue to exercise good coding practices for Javadoc and for unit testing

Proper Academic Conduct

This lab is to be done in the groups of two that we have assigned. You are to work
together to design the data structures and solution, and to implement and test this
design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

Do not make changes in the specification that we have provided. At this stage,
we are specifying all of the instance variables and most of the required methods.

When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

We encourage you to work closely with your other team member, meeting in
person when possible.

Start this project early. In most cases, it cannot be completed in a day or two.

Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.



Preparation

Import the existing project2 implementation into your eclipse workspace:
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-initial.
zip

Example Interactions
Below are several examples of our implementation of UserQuery class interacting

with a user. Your implementation should behave in the same way. Keep in mind
that we will be testing many other cases when we evaluate your code.

Please choose a station:

1. Beaver (BEAV)
2. Norman (NRMN)
3. Bixby (BIXB)
4. All 3 stations
2

Selected:

NRMN

Which year would you like?

1. Choose a year from 2002-2013
2. All years

1

Which year?

2002

Selected:

2002

Results:

Rain Average: 0.08908120133481645

Rain Min: 0.0 on 7/4/2002 at NRMN

Rain Max: 1.41 on 9/14/2002 at NRMN
Temperature Average: 63.835939081342595
Temperature Min: 16.32 on 12/25/2002 at NRMN
Temperature Max: 100.96 on 8/23/2002 at NRMN
Wind Chill Min: 12.55 on 11/27/2002 at NRMN
Heat Index Max: 108.44 on 7/25/2002 at NRMN
Wind Average: 7.615709174214736

Wind Min: 0.0 on 7/4/2002 at NRMN

Wind Max: 43.24 on 8/27/2002 at NRMN



http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-initial.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-initial.zip

Please choose a station:
1. Beaver (BEAV)

2. Norman (NRMN)

3. Bixby (BIXB)

4. A1l 3 stations

5

Selection must be between 1 and 4
adfaf

Enter an integer.

2

Selected:

NRMN

Which year would you like?
1. Choose a year from 2002-2013
2. All years

dfdfa

Enter an integer.

2

Selected:

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

Results:

Rain Average: 0.09112384746646773

Rain Min: 0.0 on 7/4/2002 at NRMN

Rain Max: 4.97 on 8/19/2007 at NRMN
Temperature Average: 61.48250315164998
Temperature Min: —3.82 on 2/10/2011 at NRMN
Temperature Max: 111.4 on 8/1/2012 at NRMN
Wind Chill Min: —16.83 on 2/1/2011 at NRMN
Heat Index Max: 110.98 on 7/12/2003 at NRMN
Wind Average: 8.915888784202986

Wind Min: 0.0 on 7/4/2002 at NRMN

Wind Max: 48.94 on 5/29/2012 at NRMN




Please choose a station:

1. Beaver (BEAV)

2. Norman (NRMN)

3. Bixby (BIXB)

4. A1l 3 statiomns

4

Selected:

BEAV

NRMN

BIXB

Which year would you like?

1. Choose a year from 2002-2013
2. All years

1

Which year?

a

Enter an integer.

Which year would you like?

1. Choose a year from 2002-2013
2. All years

1

Which year?

2001

Selection must be between 2002 and 2013
Which year would you like?

1. Choose a year from 2002-2013
2. All years

1

Which year?

2002

Selected:

2002

Results:

Rain Average: 0.07890010579067865

Rain Min: 0.0 on 1/2/2002 at BEAV

Rain Max: 2.44 on 6/12/2002 at BIXB
Temperature Average: 60.074590533426324
Temperature Min: —1.08 on 3/3/2002 at BEAV
Temperature Max: 105.69 on 7/26/2002 at BEAV
Wind Chill Min: —14.57 on 3/2/2002 at BEAV
Heat Index Max: 111.22 on 8/1/2002 at BIXB
Wind Average: 8.856051192643099

Wind Min: 0.0 on 7/4/2002 at NRMN

Wind Max: 50.06 on 5/11/2002 at BEAV




Class Design

In project 1, recall that:

e The MonthlyData and DataSet classes represented essentially the same in-
formation (compare their sets of instance variables). For example, both have
instance variables that represent rainAverage and temperatureAverage.

e The MonthlyData and DataSet classes both computed their statistics by
examining an array of sub-objects (DailyData objects for an instance of
the MonthlyData class, and MonthlyData objects for an instance of the
DataSet class). These statistics were computed in almost the same manner.

e The DailyData class also represented similar information as MonthlyData
and DataSet. For example, all three include a temperatureAverage instance
variable. However, DailyData includes a rainFall variable, but not a rainAver-
age variable. Nevertheless, one could interpret rainFall as rainAverage if we
assume that it is an average of one item.

We would like to take advantage of these commonalities in both instance variables
and methods as we refactor our code so as to simplify the full implementation. In
particular, we will define several new classes for project 2. The classes are described,
in part, below. The UML diagram provides a complete set of details.

e The StatisticsAverage abstract class captures all of the common instance
variables and methods across DailyData, MonthlyData YearlyData and
DataSet classes. For example, all of these concrete classes define a method
called getWindMax(). One can compute the maximum wind speed over a
month period by calling get WindMaz() on each of the days within the month.
Likewise, one can compute the maximum wind speed over a year period by
calling get WindMaz() on each of the months within the year.

e The DailyData class extends the StatisticsAverage class. Because the
StatisticsAverage class largely captures what we need for DailyData, this
extended class adds only a few more instance variables and methods. One
example of a new variable is stationld instance variable.

e The MultiStatisticsAbstract abstract class is extended by the Monthly-
Data, YearlyData and DataSet concrete classes. An instance of one of these
classes includes an array of sub-objects (of a child type of StatisticsAverage),



over which the statistics are computed. For example, an instance of Yearly-
Data is composed of exactly twelve MonthlyData instances. The year’s
minWind instance variable is computed by calling get WindMin() for each of
the component months.

The process of computing the statistics (average, minimum and maximum) for
an instance of the MonthlyData class is identical to the process for the Year-
lyData class (likewise for DataSet). Therefore, the implementation of the
statistics computations can be implemented once — within the MultiStatis-
ticsAbstract class.

As part of the computation of the minimum and maximum statistics, we will
track the specific day that gave rise to the minimum and maximum values.
These days are stored in the *MinDay and *MazDay instance variables. As
in project 1, if there are duplicates, we will keep the first day on which the
duplicated value occurs.



StatisticsAbstract

Observation

#temperatureMin:Observation
#temperatureMax:Observation
#temperatureAverage:Observation
#windMin:Observation
#windMax:Observation
#windAverage:Observation
#windChillMin:Observation
#heatindexMax:Observation

-value:double
-valid:boolean

+getTemperatureMinDay():DailyData
+getTemperatureMaxDay():DailyData
+getRainMin():Observation
+getRainMinDay():DailyData
+getRainMax():Observation
+getRainMaxDay():DailyData
+getRainAverage():Observation
+getWindMinDay():DailyData
+getWindMaxDay():DailyData
+getWindChillMinDay():DailyData
+getHeatIndexMaxDay():DailyData

+Observation()
+Observation(value:double)
+getValue():double
+getValid():boolean
+isLessThan(o:Observation):boolean
+isGreaterThan(o:Observation):boolean
+toString():String

Below is a complete UML diagram for our key classes.

DailyData

-year:int
-month:int
-day:int

+OTHER GETTERS

-stationld:String
-rainFall:Observation

MultiStatisticsAbstract

-temperatureMinDay:DailyData
-temperatureMaxDay:DailyData
-rainMin:Observation
-rainMinDay:DailyData
-rainMax:Observation
-rainMaxDay:DailyData
-rainAverage:Observation
-windMinDay:DailyData
-windMaxDay:DailyData
-windChillMinDay:DailyData
-heatindexMaxDay:DailyData

+getTemperatureMinDay():DailyData
+getTemperatureMaxDay():DailyData
+getRainMin():Observation
+getRainMinDay():DailyData
+getRainMax():Observation
+getRainMaxDay():DailyData
+getRainAverage():Observation
+getWindMinDay():DailyData
+getWindMaxDay():DailyData
+getWindChillMinDay():DailyData
+getHeatIndexMaxDay():DailyData

+computeStats(list:ArrayList<? extends StatisticsAbstract>):void

+toString():String

-computeRainStats(list:ArrayList<? extends StatisticsAbstract>):void
-computeTemperatureStats(list:ArrayList<? extends StatisticsAbstract>):void
-computeWindStats(list:ArrayList<? extends StatisticsAbstract>):void

+DailyData(year:int, month:int,stationld:String,

temperatureMax:Observation,
temperatureMin:Observation,
temperatureAverage:Observation,

windMax:Observation, windMin:Observation,

windAverage:Observation,

rainFall:Observation,

heatindexMax:Observation,

windChillMin:Observation)
+getDate():String
+getTemperatureMinDay():DailyData
+getTemperatureMaxDay():DailyData
+getRainMin():Observation
+getRainMinDay():DailyData
+getRainMax():Observation
+getRainMaxDay():DailyData
+getRainAverage():Observation
+getWindMinDay():DailyData
+getWindMaxDay():DailyData
+getWindChillMinDay():DailyData
+getHeatIndexMaxDay():DailyData
+OTHER GETTERS

i

MonthlyData
-days:ArrayList<DailyData>
+MonthlyData()
+add(DailyData):void
+computeStats():void

YearlyData

-months:ArrayList<MonthlyData>
-year:int
-stationld:String

+YearlyData(stationld:String, year:int)
throws IOException

+getYear():int

+getStationld():String

DataSet

UserQueryException

+UserQueryException(message:String)

UserQuery

+readint(br:BufferedReader. minValue:int, maxValue:int):int
throws 10 ion.UserQueryException

+stationMenu(br:BufferedReader):String[] throws IOException

+yearMenu(br:BufferedReader):int[] throws IOException

Tinai >

-years:ArrayList<YearlyData>

+DataSet(stationlds:String[], yearList:int[])
throws IOException
+DataSet(stationld:String, yearList:int[])
throws IOException
+DataSet(stationld:String, year:int)
throws IOException




Project Components

We provide an initial implementation for most classes. Please start from these im-
plementations. Where it is useful, it is fine to copy implementations from project

1.

1. Update the Observation class from project 1

e Add a new no-parameter constructor that creates an invalid Observation.

e Add the isLessThan() method. This will facilitate the comparison between
Observations. The behavior of this method is as follows:

this o return value
5 7 true
5 3.2 false
5 invalid true
invalid 3.7 false
invalid | invalid false

e Add the isGreaterThan() method. This method behaves as follows:

this o return value
5 7 false
5 3.2 true
5 invalid true
invalid 3.7 false
invalid | invalid false

2. Implement unit tests for the Observation class within the ObservationTest
class. Focus your new efforts on the new methods.

3. Examine and then complete the implementation of the StatisticsAbstract
class. This superclass defines the common properties of all classes about which
statistics can be computed.

e Complete the set of getters.

4. Refactor your DailyData implementation that captures the information for a

single station and day.

e Examine one of the CSV files that we have provided in the project (see

the data folder)



Note that many of the original properties and methods have migrated to
the StatisticsAbstract class

Create the new constructor

e Add a set of getters for the properties of this class

Implement the abstract methods that are required by the superclass.
Note:

— Some methods refer to the minimum and maximum of an Observa-
tion (such as rainFall). Since there is exactly one sample for rainFall
contained within a single day, it is both the minimum and maximum.

— Some methods must return the day that a minimum or maximum
falls on. Here, there is only one day that can be returned.

5. Implement unit tests for the DailyData class within the DailyDataTest
class.

6. Create a superclass called MultiStatisticsAbstract, which will compute and
represent the statistics over arrays of StatisticsAbstract objects

e Create a set of getters for the new properties introduced by this class

e Provide methods for computing rain, wind and temperature statistics over
an ArrayList of other objects.

— The prototype of the rain statistics method is defined as follows:

private void computeRainStats(ArrayList
<? extends StatisticsAbstract> list)

We have not yet discussed the general subtleties of Java Generics in
class (but will soon). Here, the parameter list must be an ArrayList
of some child class of StatisticsAbstract. This declaration guaran-
tees that all objects in the ArrayList provide the public methods
declared in StatisticsAbstract.

— It is possible that a specific property (e.g., rainMax) in all objects
in the ArrayList is invalid. Therefore, this object must be able to
represent the fact that the max over the rainMax property is also
invalid. We are using an Observation to represent this statistic to
address this issue (whereas in project 1, we represented it as a double).

7. Modify your class called MonthlyData.

10



e Much of the work that is required for this class is already done by one of
its ancestor classes

e Implement the required constructor

e Provide a method that allows a day to be added to the month (called
add()

e Provide a method that triggers the computation of the statistics for the
set of days. Note that much of this work is already done for you in the
superclass

8. Create a class called YearlyData that will represent all of the monthly data
for a given station and year.

e The constructor takes as input a station ID and a year. This constructor
is responsible for determining the file that contains all of the data for
the specified station and year (note that a single file will contain all of
this information), loading in the days for each month, computing the
statistics for each month, and then computing the statistics over all the
component months. You may assume that each file contains data for all
twelve months.

9. Create a JUnit test called YearlyDataTest

10. The class called DataSet now represents data for multiple stations and mul-
tiple years.

e One constructor for this class must:

— Take as input an array of Strings (one for each stationld) and an array
of ints (one for each year)

— Load in all of the stations and years
— Compute statistics over the entire set of data

e The other two constructors take slightly different inputs and facilitate
testing (see the UML)

11. Create a JUnit test called DataSetTest

12. Create a UserQueryException class that inherits from Exception and pro-
vides a single constructor

11



13. Create a class called UserQuery that contains your main method. This
method must:

e Query the user for the desired station (allowing “all” to be selected)

Query the user for the desired year (also allowing “all” to be selected)

Create a DataSet instance from the selected stations and years

Report the statistics for the data set

Note that there are several static helper methods that are required that
will facilitate this implementation

12



Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project2/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed (five primary classes plus four JU-
nit test classes) and that all of your documented methods have the necessary
documentation.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, October 14th (i.e, before class begins).

e Prepare your submission file by creating a project2.zip file. This file must
include your entire project, including: src, and doc

e Submit your zip file to the project2 folder on D2L.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

e Submit your project for grading to the D2L. Dropbox, as described above.

e Any day following the submission, you may do the code review with the in-
structor or the TAs. For this, you have two options:

1. Schedule a 10-minute time slot in which to do the code review. We will use
Doodle to schedule these (a link will be posted on D2L). You must attend
the code review during your scheduled time. Failure to do so will leave
you only with option 2 (no rescheduling of code reviews is permitted).

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project.

e Both group members must be present for the code review.

13



e During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code.

2. The documentation that has been provided (all three levels of documen-
tation will be examined).

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced.

e If you complete your code review before the submission deadline, you have the
option of going back to make changes and resubmitting (by the deadline). If
you do this, you will need to return for another code review.

e The code review must be completed by Monday, October 26th to receive credit
for the project.

References
e The Java API: https://docs.oracle.com/javase/8/docs/api/

e The Oklahoma Mesonet: http://www.mesonet.org

e The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

e JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

14


https://docs.oracle.com/javase/8/docs/api/
http://www.mesonet.org
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:
Implementation: 45 points

Program formatting: 10 points
(10) The program is properly formatted (including indentation, curly brace
and semicolon locations).
(5) There is one problem with program formatting.
(0) The program is not properly formatted.

Data types and method calls: 10 points
(10) The program is using proper data types and method calls.

(7) There is one error in data type or method call selection.
(4) There are two errors in data type or method call selection.
(0) There are three or more errors in data type and method call selection.

Required Methods: 15 points
(15) All of the required methods are implemented.
(10) One required method is not implemented
(5) Two required methods are not implemented.
(0) Two or more required methods are not implemented.

Unit Tests: 10 points

(10) A complete set of unit tests has been implemented.
(7) One key unit test is missing.
4)

(

(0) Three or more key unit tests are missing.

Two key unit tests are missing.

15



Proper Execution: 30 points

Output: 15 points
(15) The program passes all unit tests (these are unit tests that we pro-
vide).
(10) The program fails one test.
(5) The program fails two tests.
(0) The program fails three or more tests.

Execution: 15 points

(15) The program executes with no errors.
(8) The program executes, but there is one minor error.
(0) The program does not execute.

Documentation and Submission: 25 points

Project Documentation: 4 points
(4) The java file contains all of the required documentation elements at
the top of the file.
(3) The java file is missing one of the required documentation elements.
(2) The java file is missing two of the required documentation elements.
(0) The java file is missing more than two of the required documentation
elements.
Method-Level Documentation: 9 points
(9) Every method contains all of the required documentation elements
ahead of the method prototype.

(6) The method documentation is missing one of the required documen-
tation elements.

(3) The method documentation is missing two of the required documen-
tation elements.

(0) The method documentation is missing more than two of the required
documentation elements.

Inline Documentation: 9 points

(9) Every method contains appropriate inline documentation.

(6) There is one missing or incorrect line of inline documentation.

16



(3) There are two missing or incorrect lines of inline documentation.

(0) There are more than two missing or incorrect lines of inline documen-
tation.

Submission: 3 points

(3) The correct zip file name is used and has the correct contents.

(2) The correct zip file name is used, but one required component is
missing.

(0) An incorrect zip file name is used or more than one required compo-
nent is missing.

17



