
Lab Exercise 11: Interactive Graphics
CS 2334

November 3, 2016

Introduction

In this lab, you will extend your knowledge of creating graphics in Java. Specifically,
you will experiment with using KeyListeners and KeyEvents to construct graphics
programs that react to keyboard button presses that are made by a user.

The game that you are completing requires the player to move through a shifting
maze by pressing the right and left keys arrow keys. The player must stay within
the unoccupied area of the screen. If the player is caught by a moving wall, then the
player loses the game. If the player makes it to the end and collects the Poke Ball,
the player wins.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create event-driven graphics

2. Use a KeyListener to update graphics based on KeyEvents

3. Read existing code and documentation in order to complete an implementation

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Import the existing lab11 implementation into your eclipse workspace.

(a) Download the lab11 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab11-initial.zip file. Click Finish

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab11/lab11.zip

Game: Pokmon: Gotta Catch ’em All

Below is an image of the graphical user interface for the game that we are creating.

Ash Ketchum (the person in the red hat and blue pants) represents the player.
The rows of electric symbols are walls through which the player cannot pass. These
rows shift downwards at decreasing intervals. The goal is to move the player into a
free position before the wall overtakes the player, and collect the Poke Ball at the
end of the maze. This will be done by moving the player right or left using the right
and left keys on the keyboard.

Note: the player can wrap around the window to get to the other side.

3

UML

JPanel

JFrame
Driver

+main(String[] args): void

PokemonFrame

-serialVersionUID = 1L: long

+PokemonFrame(ImageIcon img, Point p)

GamePanel

-serialVersionUID = 1L: long
-model: GameView

+GamePanel(int w, int h, Pokemon pokemon)
#paintComponent(Graphics g): void
+getGame(): GameView

GameFrame

-serialVersionUID = 1L: long
-panel: GamePanel
-width, height: int

+GameFrame(Pokemon pokemon, int width, int height)
+getBottomRightPoint(): Point
+getPanel(): GamePanel

GameRow

-isEmptySpace: boolean
-isFinalRow: boolean
-freePosition: int

+GameRow()
+GameRow(int freePosition, boolean finalRow)
+isEmptySpace(): boolean
+getFreePosition(): int
+isFinalRow(): boolean

Pokemon

-type: String
-name: String
-legendary: boolean
-fightLength, difficultySpeed: int

+Pokemon(String name, String type, boolean legendary,
 int fightLength, int difficultySpeed)
+getBattleImage(): ImageIcon
+getBattleAttack(): Image
+isLegendary(): boolean
+getName(): String
+getFightLength(): int
+getdiff icultySpeed(): int

GameView

-width, height: int
-rows: ArrayList<GameRow>
-playerPos: int
-gameLength: int
-background: Image
-trainer: Image
-obstacle: Image
-pokeball: Image

+GameView(int w, int h, Pokemon p)
+draw(Graphics g): void
-drawRow(int y, int blockWidth, int blockHeight,
 GameRow row, Graphics g): void
-drawPlayer(int blockWidth, int blockHeight,
 Graphics g): void
+getBottomRow(): GameRow
+pushDown(int frameNum): void
+movePlayerRight(): int
+movePlayerLeft(): int
+playerIsDead(): boolean
+getPlayerPos(): int
+playerCanMove(): boolean
+getTrainer(): Image
+getObstacle(): Image

1

1

n

� Driver. This class houses the JOptionPane that the user interacts with to
select their difficulty level. The Driver then creates the appropriate Pokemon
object, PokemonFrame, and GameFrame. The game then runs to completion
inside a loop, and exits with a final JOptionPane display.

� GamePanel. A simple panel that is used inside the GameFrame to display
the GameView object.

� GameView. The meat of this project. Here, multiple components come
together to produce the Pokemon game. This class is responsible for creating

4

every component related to the maze, player, and movement. Here is where
you will finish implementing movePlayerRight and movePlayerLeft, as well as
drawPlayer, drawRow, and draw.

� GameRow. The class representation of a single row of the in-game maze.
This row can either be completely empty, or be completely filled with obstacles
save for a single empty space the player can safely pass through.

� Pokemon. A class that represents a catchable Pokemon for our game. Also
handles level dynamics such as game length, difficulty, and graphical resource
preparation for each Pokemon.

� PokemonFrame. A simple frame that displays the Pokemon you are trying
to catch. This frame is spawned at a location dependent on the GameFrame
location.

� GameFrame. The main frame that holds the gamePanel and, therefore, the
entire game. This frame is responsible for handling key inputs from the player
and moving the player on screen accordingly. You will need to implement a
KeyListener to accomplish this task.

Lab 11: Specific Instructions

All of the classes shown in the UML are provided in the initial lab11.zip.

1. Most of the classes are implemented. We want you to implement the graphics,
not the logic of the game. However, you need to analyze and understand the
game logic to implement the graphics.

� Driver, GamePanel, GameRow, Pokemon, and PokemonFrame
have been fully implemented. Read and understand these classes before
moving on.

� Implement a KeyListener in GameFrame

– When you implement the KeyListener, Java will require you to cre-
ate handler methods for three events types. Since you only need one
event type, it is okay to leave the other two methods with no body.

– Alternatively, you may implement a KeyAdapter, for which you
only need to override the one method of interest.

5

� Complete the implementation of GameView

– Most of the logic occurs in this class. Fully analyze and understand
the code before moving on.

2. Do not add functionality to the classes beyond what has been specified

3. Don’t forget to document as you go!

4. You do not need to implement JUnit tests for this lab. Instead, you should be
testing your code interactively. Make sure to try all of the possible conditions
to make sure that they player movement and game rules are implemented
correctly.

Note that Web-Cat will be executing a unit test on your code. In most cases,
we expect this unit test to pass. However, there will be an additional step
of checking that your program is producing the correct output images during
game play.

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as well as all of the Java source
files

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab11/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

6

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59pm on Friday, November 4th.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select Lab 11: KeyEvents, KeyLis-
teners, and Graphics.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat2 server.

10. Click the Submit button.

11. Browse to your jar file.

7

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

8

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). NOTE: The tests
used for this lab will focus on graphics alone - a style of testing different than
what we have done before. These unit tests will not be visible to you, but the
Web-Cat server will inform you as to which tests your code passed/failed. You
do not need to write tests for this lab. This grade component is proportional
to the fraction of tests that your code passes (so 22.5 points means that your
code passed half of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

9

� Non-visible components (2 points per violation; up to 10 points)

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

10

