Lab Exercise 3: Reading Files
CS 2334

September 8, 2016

Introduction

There are many reasons to bring data from a file into a program. Once the data from
the file are represented within a data structure, they can be analyzed or presented
to a user, and can even be used to take other external actions. Importing data from
a file is, therefore, a useful skill that you will employ for the rest of your academic
and professional career as a computer scientist.

In this laboratory, we will load data from a file into a data structure, analyze it,
and then display the information in a structured form to the user. We have provided
a specification for three classes, as well as a simple test that you can check your
output. Your task is to complete the implementation of the classes according to the
specification that we provide.

Learning Objectives
By the end of this laboratory exercise, you should be able to:

1. read and understand method-level specifications (including from UML dia-
grams),

2. read data from the file,

3. complete the implementation of a class containing multiple instance variables
and methods,

4. use the information in the file to create an array of objects, and

5.

scan through an array of objects and display the items that match a given
criterion.

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1.

Download:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/1ab3/1lab3.zip

File menu: Import

Select General/Ezisting Projects into Workspace and then click Next
Select archive file: browse to the lab3.zip file

Click Finish

Once you create the new project, it will not initially know where to find the
standard Java libraries (it varies depending on your configuration). In one of
the provided Java files, find an undefined reference to a standard class (e.g.,
String) and mouse over it. Java will provide a list of ways to repair the problem:

(a) Select Fix project setup
(b) Select Add library: JRE System Library
(c) Click OK

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab3/lab3.zip

Lab 3

For this lab, you will be parsing a file that contains a list of Pokemon compiled by
the Kaggle WebsiteE] This file contains various statistics about each of the Pokemon.
The file encodes this information in a table using the comma separated values (CSV)
format. If you double click on this file from within Eclipse, it will attempt to open
the file in a spreadsheet program, such as Excel. Alternatively, you can select the
file and open with a text editor. This will open the raw file in Eclipse.

Each line of this file encodes information about exactly one Pokemon. Each
Pokemon is described using thirteen distinct values that are separated by commas
in the file. These are:

1.

= LN

S R

10.
11.
12.
13.

The number of the Pokemon. It is important to notice that the number is
not unique to each Pokemon. For example, the three different evolutions of
Charizard all share the number 6. This will not affect the outcome of this
project.

The name of the Pokemon. Again, this is not unique.
The first type of the Pokemon.

The second type of the Pokemon. This may be blank.
The total of all the following statistics.

The health points (HP) of the Pokemon.

The base modifier of a normal attack.

The base damage resistance against normal attacks.
The base modifier for special attacks.

The base damage resistance against special attacks.
The speed of the Pokemon.

The generation the Pokemon was introduced.

Whether or not a Pokemon is legendary.

Your task for this lab is to load these Pokemon from a specified file, store this
list of Pokemon and then scan the list for Pokemon that match certain criteria.

"https://www.kaggle.com/abcsds/pokemon

https://www.kaggle.com/abcsds/pokemon

Classes

The following UML diagram summarizes the classes that are to be implemented for
this laboratory exercise.

Pokemon

- number:int

- name:String

- typel:String

- type2:String
PokemonTeam _ totalint

- creatures: ArrayList<Pokemon> - hpiint

Driver + PokemonTeam(filename: String) - zg%:;';tim
R - throws 10 Exception) L
+team. Poke-monTean.1 + toSting0: Stringp - spAttackint

; : 1 <>———- spDefense:int

throws IOException . speed:int
- generation:int
- legendary:boolean
+ Pokemon(strg:String)
+ isFirstGenLegendary():boolean
+ isThirdGenPsychic():boolean
+ isLegendaryWater():boolean
+ toString():String
and other getters

The Pokemon class is responsible for representing a single Pokemon. Here are
the methods that need to be implemented:

e Pokemon constructor. Here you will need to take in a String that corresponds
to one Pokemon and parse it to populate the class variables.

e isFirstGenLegendary() This method indicates whether a Pokemon object is in
the first generation and is legendary.

e isThirdGenPsychic() This method indicates whether the Pokemon is in the
third generation and is of the pyschic type.

e isLegendaryWater() This method indicates whether the Pokemon is legendary
and is of the water type.

e toString(). This method returns a String in the format shown in
lab3-expected Output. pdf.

e A full set of getters. Use Eclipse to generate these for you.

The PokemonTeam class represents a team of Pokemon. Here are the methods
that need to be implemented:

e PokemonTeam constructor. This method takes as input a file name, reads
through the file, creates one Pokemon object from each line in the file, and
adds each to an ArrayList.

© 00O Ut W~

e toString(). This method returns a String in the format shown in
lab3-expected Output. pdf.

The Driver class contains a PokemonTeam object and the main() method. The
main() method of this class:

e Creates a PokemonTeam object with a specific file name

e Prints out the PokemonTeam object

Reading a File

Within the PokemonTeam constructor, a file must be read and then parsed. An
example of the code needed to pull out individual lines and add them to a list is
provided below:

ArrayList<String> list = new ArrayList<String>(); // ArrayList of Strings

BufferedReader br = new BufferedReader (new FileReader(”filename.txt”));
String strg = br.readlLine(); // Read first line
while (strg != null) // Iterate as long as there is a next line
{
list.add(strg); // Add the line to the ArrayList
strg = br.readLine(); // Attempt to get the next
}

(of course, you must create Pokemon object instances to add to your Arraylist).

A BufferedReader can take different input streams as a parameter. In Lab 1, an
InputStreamReader was used in order to take input from System.in (the keyboard).
In this lab, a FileReader will be used. A FileReader takes a file name as a parameter.
Notice that the file name is a String?| Line 2 of this example opens the file and turns
it into a FileReader object that can then be used by the BufferedReader object.

Automatically Generating Getters and Setters in
Eclipse

Eclipse is able to generate the getters and setters for a class for you. While editing
the class, the steps are:

2Remember that String literals must have quotes around them.

e Declare all the instance variables
e Select Source on the toolbar

e Select Generate Getters and Setters... from the dropdown menu

From this menu, you can select the getters and setters you would like generated
from the dropdown associated with each class variable. You can also select all getters,
all setters or both. For this lab, remember that you are creating immutable classes.

Final Steps

1. Generate Javadoc using Eclipse.

e Select Project/Generate Javadoc...

e Make sure that your project is selected, as are the Driver, Pokemon, Poke-
monTeam classes

Select Private visibility
Use the default destination folder
Click Finish

2. Open the lab3/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that both of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 11:59pm on Friday, September 9th.

e Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select CS 2334/Lab 03 (2334):

Pokemon.

Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your

submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

e Method 2: Submit directly to the Web-Cat server

A e

~

From the File menu, select Fzxport.

Select Java/JAR File. Click Next.

Select and expand your project folder.

Select your src and doc folders. Do not include csv files.
Select Ezxport Java source files and resources.

Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10.
11.
12.
13.

14.

Click the Submit button.
Browse to your jar file.
Click the Upload Submission button.

The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

References

e The API of the BufferedReader class can be found at:
http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

e Non-descriptive or inappropriate project- or method-level documentation

e Missing or inappropriate inline documentation

e Inappropriate choice of variable or method names

e Inefficient implementation of an algorithm

e Incorrect implementation of an algorithm

e Incomplete coverage of your Unit Tests. We expect that your unit tests

will test all lines of your code

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points
You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

10

