Lab Exercise 7: Generics, Lists and Stacks
CS 2334

October 6, 2016

Introduction

In this lab, you will experiment with the use of generics. Generics allow you to
abstract over types. More specifically, they allow types (classes and interfaces) to be
parameters when defining classes, interfaces, and methods. You will create a card
game that makes use of a generic Deck class to create three decks of cards of two
different types: one type is based on the Characters on the card, and the other type
is based on the Fate shown on the card. Although we will have two distinct types of
Decks, both will need a standard set of operations (including shuffling and drawing).
By using Java generics to implement a generic Deck class, we only need to implement
these methods once and the implementation will work for many different types of
card decks.

As part of the Deck implementation, we will also make use of the Stack class from
the Java Collections Framework to store stacks of used and unused cards.

Learning Objectives
By the end of this laboratory exercise, you should be able to:

1. Create classes using generics in Java
2. Use generic classes to solve larger problems

3. Use the Stack class to store and retrieve objects

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation
1. Import the existing lab7 implementation into your eclipse workspace.

(a) Download the lab7 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/1labs/lab7/1ab7.zip

(b) In Eclipse, select File/Import
(c) Select General/Ezxisting projects into workspace. Click Next
(d) Select Select archive file. Browse to the lab7.zip file. Click Finish

The Fate Card Game

The game has three decks of cards: an Emperor’s Deck, a Plebeian’s Deck, and a
Fate Deck. To play the game:

e The player draws one card from the Fate Deck.
— If the player drew a Riches Card, they will receive the Emperor’s Deck,
and the opponent the Plebeian’s Deck.
— If the player drew a Revolution Card, they will receive the Plebeian’s
Deck, and the opponent the Emperor’s Deck.
e Each player then draws the top card from their deck and plays it face up.

— If both cards are a Patrician, the outcome is a tie. Both players then draw
the next card on top of their respective decks, repeating until the cards
are different.

— If an Emperor and a Plebeian are played against each other, the Plebeian
wins and the owner of the Plebeian card wins 4 points.

— If an Emperor is played against a Patrician, the Emperor wins and the
owner of the Emperor card wins 1 point.

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab7/lab7.zip

— If a Plebeian is played against a Patrician, the Patrician wins and the
owner of the Patrician card wins 1 point.

e [f there are more games to be played, all decks are shuffled and the player
restarts by drawing a Fate card.

The full implementation of our program will first create one Emperor, one Ple-
beian, and one Fate Deck, and then shuffle all three. Your program will then play
our game 50 times, reporting the result of each play to the console (you are free to
change this number inside of the Driver class to a larger number, if desired).

Class Design

Below is the UML representation of the set of classes that make up the implementa-
tion for this lab. Note that we have introduced a couple of new bits of notation:

e We are explicitly representing our generic classes with the generic type unde-
fined AND our generic class with the generic type bound to some other type
(e.g., Card<T> vs Card<Character>).

e Although we will explicitly implement the generic class (Card<T>), we don’t
provide an explicit implementation of the bound class (Card<Character>) — the
compiler does this for us! Hence, the bound class is labeled as “<<implicit>>”.

e The lines labeled “<<binds>>” tell us explicitly what the binding is for our
generic type.

The key classes in our project are:

e Character is an enumerated data type that defines a set of characters. Namely,
the Emperor, Patrician, and Plebeian.

e Fate is an enumerated data type that defines a set out deck assignments .
Namely, the Revolution card and the Riches card.

e The Card generic class is defined by a generic type, T. The two arrows from
Card<Character> and Card<Fate> to Card indicate that the generic type of
Card is bound in two different ways: one with Character and the other with
Fate.

«binds»

«implicit»

Card<Character>

I .
| «binds»

----N +Card(cardValue:T)

«enumeration»
Character
EMPEROR
PATRICIAN
PLEBEIAN
-cardName:String

-Character(cardName:String)
+toString():String

Card<T> -
-cardValue: T

+getCardValue(): T
+toString(): String

Deck<T, T2 extends Card<T>>

#discardStack: Stack<T2>
#drawingStack: Stack<T2>
-name: String

+Deck(name:String)
+populateDeck(): void
+drawCard(): T
+shuffleDeck(): void
+resetDeck(): void
#destroyDeck(): void

«enumeration»
Fate

RICHES
| «binds» | REVOLUTION

1
|
|
|
|
|
|
|

_____ |

-playersFate:String |
|
|
|
|
|
|
|
|
|

-Fate(playersFate:String
+toString(): String

«implicit»
Card<Character>

«implicit»
Card<Fate>

«binds» N

«binds»

EmperorsDeck<Character, Card<Character>>

FateDeck<Fate, Card<Fate>>

PlebeiansDeck<Character, Card<Character>>

+EmperorsDeck()
+populateDeck():void

+FateDeck()
+populateDeck():void

+PlebeiansDeck()
+populateDeck():void

b

Game

-emperor: EmperorsDeck
-plebeian: PlebeiansDeck
-fate: FateDeck
-PLAYER_LOST: int
-PLEBEIAN_EMPEROR: int

-PATRICIAN_NONPATRICIAN: int

+Game()
+playOnce():int throws
LostCardsException
+play(emperor:EmperorsDeck,
plebeian:PlebeiansDeck,
fate:FateDeck):int
-ensureNewGame(): void

1
o
< |
|
Driver

-NUMBER_OF_GAMES_TO_PLAY: int

+Driver()

+main(args:Strin : void

e Deck is an abstract class that is defined by a pair of generic types: T and

T2. T defines the underlying generic type of Card (in our case, Character
or Fate) and T2 is a form of Card (specifically, T2 is-a Card<T>).

e The lines from EmperorsDeck, PlebeiansDeck, and FateDeck to Deck in-

dicate that EmperorsDeck, PlebeiansDeck, and FateDeck extend Deck.
Note that each of these subclasses also explicitly binds T and T2 to particu-
lar Card types. For example, the FateDeck explicitly binds Fate to T and
Card<T> to Card<Fate>.

Lab 7: Implementation Steps

Start from the class files that are provided in lab7.zip.

1.

The classes Card, Character, PlebiansDeck, and the Driver have been
fully implemented and should not be modified.

The class Deck is a generic and abstract class. This class is partially imple-
mented for you. You will need to complete the implementation of each method
that is listed in the UML.

Create and implement the enumeration class Fate. Each enum has a single
string associated with which fate it depicts. RICHES means that the player’s
fate is 7 You are the Emperor”. REVOLUTION means that the player’s fate is
"You are the Plebeian”. Each Fate enum’s string representation should simply
return the player’s fate.

Create and implement the class FateDeck. The name of this deck should be
stored as ”The Deck of Fate”. The method populateDeck() should first destroy

any deck it made previously, and then populate the deck with one card of type
RICHES and one of type REVOLUTION.

Create and implement the class EmperorsDeck. The name of this deck should
be stored as "Emperor’s Deck”. The method populateDeck() should first de-
stroy any deck it made previously, and then populate the deck by placing a
full set of cards into the deck. Specifically, this method should place 4 cards of
type PATRICIAN and one of type EMPEROR.

The class Game is partially implemented for you. You will need to complete
the implementation for the method play(). play() plays one game (as described

5

in the Fate Card Game section above) given an EmperorsDeck, a PlebeianDeck,
and a FateDeck and reports the amount of points the player received. These
point values must utilize the constants created in the Game class, as well as the
constPlayerLost modifier:

e If the two cards played are a Plebeian/Emperor combination, return the
constPlebeianEmperor constant multiplied by the constPlayerLost modi-
fier if the player lost.

e If the two cards played are a Patrician/NonPatrician combination, return
the constPatricianNonPatrician constant multiplied by the constPlayer-
Lost modifier if the player lost.

7. Implement JUnit tests to thoroughly test all classes and methods you creat-
ed/implemented.

e You need to convince yourself that everything is working properly

e Make sure that you cover all of the cases within the methods while creating
your tests. Keep in mind that we have our own tests that we will use for
grading.

Example Output

Below is an example output of the full program, playing a total of 6 games and then
reporting the total score for the player at the end. The details of your games will
vary.

///11]]]]] FATE GAME START ///////]//

Player's Current Total Score: 0
///// You are the Plebeian /////
You: Patrician

Opp: Patrician

You: Patrician

Opp: Patrician

You: Patrician

Opp: Patrician

You: Patrician

Opp: Patrician

You: Plebeian

Opp: Emperor

Player's Current Total Score: 4
///// You are the Plebeian /////
You: Plebeian

Opp: Emperor

Player's Current Total Score: 8
///// You are the Emperor /////
You: Emperor

Opp: Patrician

Player's Current Total Score: 9
///// You are the Plebeian /////
You: Patrician

Opp: Patrician

You: Patrician

Opp: Patrician

You: Patrician

Opp: Emperor

Player's Current Total Score: 8
///// You are the Emperor /////
You: Patrician

Opp: Patrician

You: Emperor

Opp: Patrician

Player's Current Total Score: 9
///// You are the Plebeian /////
You: Patrician

Opp: Patriciamn

You: Patrician

Opp: Patricianm

You: Patrician

Opp: Patrician

You: Patrician

Opp: Emperor

//11//]/]] FATE GAME END //////]//]

Player's Final Score: 8

Final Steps
1. Generate Javadoc using Eclipse.

e Select Project/Generate Javadoc...
e Make sure that your project (and all classes within it) is selected
e Select Private visibility
e Use the default destination folder
e Click Finish.
2. Open the lab7/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make

sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 11:59:00pm on Monday, October 10th.

e Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.
2. Select your project.

3. From the Project menu, select Submit Assignment.

4

. Under Select the assignment to submit, select Lab 7: Lab 7: Generics,
Lists, and Stacks.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7.

Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

e Method 2: Submit directly to the Web-Cat server

ISARER AN e

~

From the File menu, select Ezport.

Select Java/JAR File. Click Next.

Select and expand your project folder.

Select your src and doc folders.

Select Fxport Java source files and resources.

Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10.
11.
12.
13.

14.

Click the Submit button.
Browse to your jar file.
Click the Upload Submission button.

The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

Rubric

The project will be graded out of 100 points. The distribution is as follows:
Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

e Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

e Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

e Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

e Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

e Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

e Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code (up to 15 points)

10

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points
You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

11

