
Lab Exercise 8
CS 2334

October 13, 2016

Introduction

In this lab, you will experiment with using HashMaps and Enumerated data types
in Java. You will implement a few different classes of enums, one that has a custom
class as the value. In the Driver class, you will create several different HashMaps—
one that maps from a String to one of the enumerated data types, and two that
maps values from one of the enums to other values from itself. In addition, your
implementation will iterate over a HashMap.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create an enumerated data type

2. Create and add items to a HashMap

3. Pull values out of a HashMap using a key

4. Iterate over a HashMap in order to print out information

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

1

Preparation

1. Import the existing lab 8 implementation into your eclipse workspace.

(a) Download the lab 8 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab8/lab8.zip

(b) In Eclipse, select File/Import

(c) Select General/Existing projects into workspace. Click Next

(d) Select Select archive file. Browse to the lab8.zip file. Click Finish

Representing Different Pokemon

Below is the UML representation of the lab. Your task will be to implement this set
of classes and an associated set of JUnit test procedures.

Driver

- pokemonMap: HashMap<String, Pokemon>

+ main(args: String[]): void

«enumeration»
Pokemon

BULBASAUR(...)
CHARMANDER(...)
SQUIRTLE(...)

- info: PokemonInfo

- Pokemon(info: PokemonInfo)
+ getNature(): Nature
+ getPokemonType(): PokemonType
+ toString(): String

PokemonInfo

- nature: Nature
- pokemonType: PokemonType

+ PokemonInfo(nature: Nature, pokemonType: PokemonType)
+ getNature(): Nature
+ getPokemonType(): PokemonType
+ toString(): String

«enumeration»
PokemonType

FIRE
GRASS
WATER

- strengthMap:
 HashMap<PokemonType,
 PokemonType>
- weaknessMap:
 HashMap<PokemonType,
 PokemonType>

+ effectiveAgainst():
 PokemonType
+ weakAgainst(): PokemonType
+ toString(): String

«enumeration»
Nature

BRAVE
QUIET
RELAXED

+ toString(): String

1

1

3

1

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab8/lab8.zip

We will only be using the following Pokémon for this lab: Bulbasaur, Charman-
der, and Squirtle. The keys used with the pokemonMap HashMap are three letter
abbreviations for the names of the Pokémon: BLB, CHR, and SQR respectively. The
properties of the three Pokémon that we will represent in this lab are as follows:

� BULBASAUR: nature - RELAXED, type - GRASS

� CHARMANDER: nature - BRAVE, type - FIRE

� SQUIRTLE: nature - QUIET, type - WATER

A Pokémon’s type affects how well it does in combat with other Pokémon. Cer-
tain types are especially effective against others, as defined by the following table:

Type Effective Against
Fire Grass

Water Fire
Grass Water

Table 1: Type effectiveness table

Lab 8: General Instructions

1. If not already defined (by our zip file), create Java classes for Nature, Pokemon,
PokemonType, PokemonInfo, and Driver as described in the UML diagram

� Be sure that the class name is exactly as shown

� You must use the default package, meaning that the package field must
be left blank

2. Implement the attributes and methods for each class

� We suggest that you start at the “bottom” of the class hierarchy: start
by implementing classes that do not depend on other classes

� Use the same spelling for instance variables and method names as shown
in the UML

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

3

3. Create test classes and use JUnit tests to thoroughly test all of your code

� You need to convince yourself that everything is working properly

� Make sure that you cover all the classes and methods while creating your
test. Keep in mind that we have our own tests that we will use for grading.

Lab 8: Specific Instructions

Nature Enum

This enumeration should have the following members: BRAVE, QUIET, RELAXED.

� toString(): This method should return the name, in lowercase, of the particular
member of the enum.

PokemonType Enum

This enumeration has the following members: FIRE, GRASS, WATER.

The PokemonType enum contains a subset of the possible types that a Pokémon
can be (there are many more types than the three we are using in the lab).

As previously mentioned, a Pokémon’s type effects how well it does in combat
with other Pokémon. Certain types are especially effective against others. In order
for the members of the enumeration to express the types they are weak/strong against
we have two HashMaps to store these relations: strengthMap and weaknessMap.
The strengthMap HashMap maps a type to the type that it is strong against. The
weaknessMap maps the type to the type that it is weak against.

In order to only create and populate these maps once, while still being able
to access them from references to the enumeration’s members, we need to make
them static—these properties need to also be marked final to indicate that they are
constant and should not be changed. Initializing and populating the strengthMap and
weaknessMap HashMaps should be done in a static initializer. A static initializer
is a block of code that runs only once when a class declaration is first loaded by Java.
This code runs after initialization of static variables at their declaration, and before
anything else—you can think of it as a constructor for the class itself, instead of a
constructor for individual instances of the class.

4

Since a static initializer is only run once, and is only used by Java internally, you
don’t give it a name as you would with other methods, as it cannot (and should not!)
be callable by any other piece of code. A static initializer is a method that looks like
the following:

c l a s s Foo // Some c l a s s
{

s t a t i c // This i s the s t a t i c i n i t i a l i z e r f o r c l a s s Foo
{

. . . // Code goes here .
}

}

See table 1 on page 3 for the mappings you need to setup inside the HashMaps.

The instance methods to be implemented are as follows:

� effectiveAgainst(): This method should return the PokemonType that this par-
ticular PokemonType is effective against.

� weakAgainst(): This method should return the PokemonType that this partic-
ular PokemonType is weak against.

� toString(): This method should return, in lowercase, the name of the particular
member of the enum.

PokemonInfo Class

This class contains information about a particular Pokémon. This information in-
cludes the following: the Pokémon’s Nature and the Pokémon’s PokemonType.

� PokemonInfo constructor : The constructor takes in a Nature and a Pokemon-
Type, and assigns them to the appropriate instance variables.

� getNature(): This method returns the Nature stored in this particular instance
of PokemonInfo.

� getPokemonType(): This method returns the PokemonType stored in this par-
ticular instance of PokemonInfo.

� toString(): This method should return the information stored in this particular
instance of PokemonInfo in the following format:

5

a <NATURE> <POKEMON_TYPE> type

where <NATURE> is the Nature stored in this instance, and <POKEMON TYPE>
is the PokemonType stored in this instance. If the Nature were to be BRAVE
and the PokemonType to be WATER, then the output would look like the
following:

a brave water type

Note: the string ends with the ’e’ at the end of type (there is no newline character).

Pokemon Enum

The Pokemon enum contains a subset of the very large number of Pokémon that
exist. This enum has the following members: BULBASAUR, CHARMANDER, and
SQUIRTLE.

� Pokemon constructor : This constructor takes in an instance of PokemonInfo
and stores it in the appropriate instance variable.

� getNature(): This method returns the Nature of the Pokemon.

� getPokemonType(): This method returns the PokemonType of the Pokemon.

� toString(): This method returns a descriptive string of the Pokemon. The
string should be in the following format:

<NAME>: a <NATURE> <POKEMON_TYPE> type

where <NAME> is the name of the Pokémon in titlecase (the first letter is cap-
italized, the rest are lowercase), and <NATURE> and <POKEMON TYPE>
are covered in the above section detailing the Pokemon enum. For the Pokémon
BULBASAUR, with a QUIET Nature and a PokemonType of GRASS, the re-
turned string would look like:

Bulbasaur : a quiet grass type

6

Driver Class

The Driver class will create and populate a HashMap with Strings as keys and
members of the Pokemon enum as values. It will also present the user with an
option to choose a single Pokémon or all of the Pokémon in the HashMap about
which to print information. If the user opts to choose a specific Pokémon, then your
program will print information for that specific Pokémon. If the user opts for the
list, then all of the Pokémon in the HashMap are presented to the user.

� Main menu:

Professor Oak , the Pokemon professor , presents you with three pokeballs ←↩
and tells you that you can choose one as your first Pokemon !

Please select an option :
1 : Choose a Pokemon

2 : List all Pokemon

� Pokémon selection menu:

Please choose from the following Pokemon : [SQR , BLB , CHR]

Note: Sets are unordered, so the list of Pokémon could be in any order. The
formatting occurs when a Set is printed.

Use a BufferedReader to take in the input. Your code will need to be able to
handle any input that the user could choose, e.g. numbers other than 1 and 2,
letters, Pokémon not listed, etc. If incorrect input is given, then your program must
re-prompt until a correct input is given.

Once all of the necessary information is obtained from the user, your program
must print the report on chosen Pokémon (or all Pokémon) and exit.

7

Example Interactions

Professor Oak , the Pokemon professor , presents you with three pokeballs − and ←↩
tells you that you can choose one as your first Pokemon !

Please select an option :
1 : Choose a Pokemon

2 : List all Pokemon

1
Please choose from the following Pokemon : [SQR , BLB , CHR]
SQR

You choose Squirtle : a quiet water type .
Your water type Pokemon is weak against grass types and strong against fire types .

Professor Oak , the Pokemon professor , presents you with three pokeballs − and ←↩
tells you that you can choose one as your first Pokemon !

Please select an option :
1 : Choose a Pokemon

2 : List all Pokemon

2
SQR − Squirtle : a quiet water type .
BLB − Bulbasaur : a relaxed grass type .
CHR − Charmander : a brave fire type .

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project (and all classes within it) is selected

� Select Private visibility

� Use the default destination folder

� Click Finish.

2. Open the lab8/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

8

Submission Instructions

� All required components (source code and compiled documentation) are due
at 11:59:00pm on Friday, October 14th.

� Method 1: Submit through Eclipse

1. From the Window menu, select Preferences/Configured Assignment.

2. Select your project.

3. From the Project menu, select Submit Assignment.

4. Under Select the assignment to submit, select Lab 8: Enumerated Data
Types and Hash Maps.

5. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

6. Click Finish.

7. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Method 2: Submit directly to the Web-Cat server

1. From the File menu, select Export.

2. Select Java/JAR File. Click Next.

3. Select and expand your project folder.

4. Select your src and doc folders.

5. Select Export Java source files and resources.

6. Select an export destination location (e.g., your Documents folder/direc-
tory). This file should end in .jar

7. Select Add directory entries.

8. Click Finish.

9. In your web browser, login to the Web-Cat server.

10. Click the Submit button.

11. Browse to your jar file.

9

12. Click the Upload Submission button.

13. The next page will give you a list of all files that you are uploading. If
you selected the correct jar file, then click the Confirm button.

14. Your browser will then open a Web-Cat page that shows your submission
being graded. After a short wait, the page will show a report of your
submission. See the main class web page for a link that describes the
Web-Cat output.

Hints

� All enum types automatically provide a name() instance method that will
return a String description of the enum value. Specifically, it is the same
String that you use to declare the value in the enum class.

10

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code (up to 15 points)

11

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late.

12

