CS 2334
Project 2: Class Abstractions

September 25, 2015

Due: 1:29 pm on Wednesday, Oct 12, 2016

Introduction

In project 1, you had your first exposure to an Oklahoma Mesonet data set. Here, the
data were relatively clean (though some samples were not valid) and you computed
statistics over the days within a month. In this project, we will substantially expand
the data set by adding multiple stations, multiple months and multiple years. In
addition, the data will not be so clean — there will be some months in which certain
Sample types are never valid. Your final product will be able to report statistics for
a single station and year, or multiple stations and multiple years.

In order to simplify our implementation, we will make heavy use of class abstrac-
tion. You will also engage in a process of refactoring, where your original project 1
code base is reorganized to simplify and extend the implementation.

Learning Objectives
By the end of this project, you should be able to:

1. Load a set of files from a directory (folder)
2. Create and use abstract objects in appropriate ways

3. Make use of polymorphism in code

W~

. Continue to exercise good coding practices for Javadoc and for unit testing



Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

e Do not make changes in the specification that we have provided. At this stage,
we are specifying all of the instance variables and the required methods.

e When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

e We encourage you to work closely with your other team member, meeting in
person when possible.

e Start this project early. In most cases, it cannot be completed in a day or two.

e Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

e Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

1. Copy your projectl implementation into project2.

2. Download the following data file:
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-data.
zip

3. Copy the data into your project2 workspace. The year directories should be
placed into project2/data/


http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-data.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project2/project2-data.zip

Class Design

In project 1, a single Mesonet station provided one tuple of data for each each day,
as represented in our DataDay class. Days are collected into ordered sets using
the DataMonth class. This latter class provided functionality that enabled us to
compute statistics over the days. In this project, we will introduce representations
for years and data sets (collections of years). In each case, we wish to compute the
same sorts of statistics as we did for months: the maximum wind speed over a year
is the maximum over its component months, and the average wind speed over a data
set is computed as the average of its component years. These similarities in func-
tionality can be captured using class inheritance. For example, the implementation
of computing the average over sub-objects can be shared across all classes that have

sub-objects.
Below is a complete UML diagram for our key classes.

StatisticsAbstract Sample
-value:double
+getWindSpeedMinDay():DataDay -valid:boolean
+getWindSpeedMaxDay():DataDay +Sample()
+getWindSpeedAverage():Sample +Sample(value: double)
+getSolarRadiationMinDay():DataDay +getValue(): double
+getSolarRadiationMaxDay():DataDay +isvalid(): boolean
+getSolarRadiationAverage():Sample +toString(): String
+isLessThan(s:Sample):boolean

+isGreaterThan(s:Sample):boolean
<L4

MultiStatisticsAbstract DataDay
#getltem(i:int):StatisticsAbstract -year:int
#itemCount():int -month:int
+getWindSpeedMinDay():DataDay -day:int
+getWindSpeedMaxDay():DataDay -stationID:String
+getWindSpeedAverage():Sample -windSpeedMax:Sample
+getSolarRadiationMinDay():DataDay -windSpeedMin:Sample
+getSolarRadiationMaxDay():DataDay -windSpeedAverage:Sample
+getSolarRadiationAverage():Sample -solarRadiation:Sample
Driver +DataDay()
+DataDay(year:int, month:int, day:int,
TP o slallonID_:St‘rmg,
- - solarRadiation:Sample,

windSpeedMin:Sample,

windSpeedAverage:Sample,

windSpeedMax:Sample)
+toString():String

throws I0Exception

! DataMonth +getYear():int
| “year:int +getMonth():int
1 . +getDay():int
-month:int 9 y()
! Datayear _stationID:String MmmstationlDO:Strmg
-year:int . Arrayl i +getSolarRadiation():Sample
v -stationlD:String <17 |daysiArmaylist<Databay> +getSolarRadiationMinDay()-DataDay
DataSet -months:ArrayList<DataMonth> +DaiaM0th . +getSolarRadiationMaxDay():DataDay
-years:ArrayList<DataYear> +DataYear(fileName:String) zagﬂlz:)earzgﬁlar%/t‘)l?gtaatgsg).de +getSolarRadiationAverage():Sample
+DataSet(fileNames:String[]) O/ throws I0Exception #ﬁsmCouﬁt() int Yy +getWindSpeedMin():Sample
throws IOException #addDay(day:DataDay):void +toString():Strin +gelW!ndSpeedMax():Sample
#getltem(i:int):DataYear #getltem(i:int):DataMonth 90: 9 +getWindSpeedAverage():Sample
#itemCount():int #itemCount():int +getWindSpeedMinDay():DataDay
+toString():String +toString():String +getWindSpeedMaxDay():DataDay
+reportStatistics():String

The key aspects of the high level design are:

e The StatisticsAbstract abstract class represents any object about which
statistics can be computed over. The inheriting classes are DataDay,
DataMonth, DataYear and DataSet. For example, all of these concrete
classes must provide a means of computing the minimum solar radiation. One



can compute this statistic over a month period by asking what the minimum
solar radiation is for each of the days within the month.

The DataDay class extends the StatisticsAbstract class.

The MultiStatisticsAbstract abstract class represents all objects that
compute their measures over sub-objects. DataMonth, DataYear
and DataSet are concrete classes that all inherit from this abstract class.
The process of computing the statistics (average, minimum and maximum)
for an instance of any of these classes is identical. Therefore, the implemen-
tation of the statistics computations can be implemented once — within the
MultiStatisticsAbstract class.

As part of the computation of the minimum and maximum statistics, we will
track the specific day that gave rise to the minimum and maximum values.
Hence, the getSolarRadiationMinDay() will return the day on which the min-
imum occurs. If one needs to know the value of the minimum, one can then
ask the returned DataDay object for its solar radiation.

DataMonth, DataYear and DataSet each contain an ArrayList of sub-
objects. For example, a DataYear contains exactly twelve DataMonth objects.



Project Components

Please start from your project 1 implementation. Here are the key changes:

1. Update the Sample class from project 1

e Add the isLessThan(Sample s) method. This will facilitate the compar-
ison between Sample. The behavior of this method will be the following
for these different cases:

this S return value
5 7 true
5 5 false
5 3.2 false
5 invalid true
invalid 3.7 false
invalid | invalid true

e Add the isGreaterThan(Sample s) method. This method behaves as fol-

lows:
this S return value
5} 7 false
5! 5 false
5 3.2 true
5 invalid true
invalid 3.7 false
invalid | invalid true

2. Implement unit tests for the Sample class within the SampleTest class. Focus
your new efforts on the new methods (keeping your old unit tests).

3. Examine and then complete the implementation of the StatisticsAbstract
class. This superclass defines the common behavior for all classes about which
statistics can be computed.

4. Refactor your DataDay implementation that captures the information for a

single station and day.

e The data format has not changed

e Create a new default constructor:



public DataDay ()

This constructor creates a day with uninitialized data (for day, month,
year and stationID) and invalid samples.

e Implement the abstract methods that are required by the superclass.
Note:

— Some methods refer to the minimum and maximum of an Sample
(such as solarRadiation). Since there is exactly one sample for solar-
Radiation contained within a single day, it is both the minimum and
maximum.

— Some methods must return the day that a minimum or maximum
falls on. Here, there is only one day that can be returned.

5. Implement unit tests for the DataDay class within the DataDayTest class.
Make sure to cover the new methods.

6. Create a superclass called MultiStatisticsAbstract, which will compute and
represent the statistics over arrays of StatisticsAbstract objects

e Provide methods for computing solar radiation and wind speed statistics
over a set of objects. Here are a few notes:

— These methods can ask how many sub-objects there are using the
itemCount() method.

— The individual sub-objects can be fetched using the getltem() method.

— It is possible that an object has no sub-objects or the sub-object
Samples are all invalid for the property in question. In these cases,
a min/max method should return an invalid DataDay object. Fur-
thermore, an average method should return an invalid Sample object.

7. Refactor your DataMonth class.

e A DataMonth object is composed of an array of DataDay objects.

e Provide a method that allows a day to be added to the month (called
addDay(). The object instance knows the month, year and stationID that
it corresponds to. This information can be extracted as days are added
to the month.



e Note that the file loading functionality has migrated from this class to
DataYear.

e The toString() method should output information in the following format:
TISH station for November of 2015:

2015—11, TISH: Wind = [0.0000, 8.9807, 28.8100], Solar Radiation = <
[0.9000, 8.8883, 15.2500]

HINT station for February of 2014:

0000—00, null: Wind = [invalid, invalid, invalid], Solar Radiation = [+«
invalid, invalid, invalid]

8. Create a JUnit test called DataMonthTest

9. Create a class called DataYear that will represent all of the monthly data for
a given station and year.

e This object is composed of an ArrayList of exactly twelve months.

e The constructor takes as input a String that contains the name of a file
from which an entire year’s data is loaded.

e The toString() method should output information according to the fol-
lowing format:

TISH station for 2015:

2015, TISH: Wind = [0.0000, 7.8934, 40.5300], Solar Radiation = ¢«
[0.4000, 15.7975, 30.3500]

HINT station for 2013:

2013, HINT: Wind = [0.0700, 12.1837, 39.1700], Solar Radiation = ¢«
[1.7500, 18.3217, 31.2500]

10. Create a JUnit test called DataYearTest

11. The class called DataSet now represents data for multiple stations and mul-
tiple years.



One constructor for this class must:

— Take as input an array of Strings, each describing one of the years to

be loaded.

The toString() method should output information in the following format:
TISH station for 2013, 2014 and 2015:

Data Set: Wind = [0.0000, 8.2617, 40.5300], Solar Radiation = [0.4000, <«
16.3488, 30.6400

HINT station for 2013, 2014 and 2015:

Data Set: Wind = [0.0000, 12.0708, 41.0500], Solar Radiation = [0.4900,«
17.6787, 31.2500

The reportStatistics() method should return a String that describes the
statistics in detail in the following examples:

TISH station for 2013, 2014 and 2015 (years are specified in this order in
the constructor):

Max Wind Speed:

2015—12—-27, TISH: Wind = [11.7300, 25.5100, 40.5300], Solar Radiation =¢
0.4000

Average Wind Speed:

8.2617

Min Wind Speed:
2013—06—08, TISH: Wind = [0.0000, 7.5200, 16.1300], Solar Radiation = ¢«
27.3400

Max Solar Radiation:
2013—-06—02, TISH: Wind

[2.3800, 8.2800, 17.3600], Solar Radiation = ¢«

30.6400

Average Solar Radiation:

16.3488

Min Solar Radiation:

2015—12—27, TISH: Wind = [11.7300, 25.5100, 40.5300], Solar Radiation =¢
0.4000




HINT station for 2013, 2014 and 2015 (years are specified in this order in
the constructor):

Max Wind Speed:

2015—12—26, HINT: Wind = [1.5700, 20.3200, 41.0500], Solar Radiation = ¢«
0.4900

Average Wind Speed:

12.0708

Min Wind Speed:
2014—10—28, HINT: Wind = [0.0000, 9.6000, 23.3800], Solar Radiation = <
13.1900

Max Solar Radiation:

2013—06—09, HINT: Wind
31.2500

Average Solar Radiation:

17.6787

Min Solar Radiation:

2015—12—26, HINT: Wind = [1.5700, 20.3200, 41.0500], Solar Radiation = ¢«
0.4900

[1.1900, 6.9500, 18.7200], Solar Radiation = ¢«

12. Create a JUnit test called DataSetTest

13. Create a Driver class that creates a DataSet and calls reportStatistics()



Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project2/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed (four primary classes plus three Junit
test classes) and that all of your methods have the necessary documentation

Submission Instructions

e All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, October 12 (i.e, before class begins)

e Submit your project to Web-Cat using one of the two procedures documented
in the Lab 2 specification.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

e Submit your project for grading to the Web-Cat server.

e Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

e Both group members must be present for the code review

e During the code review, we will discuss all aspects of the rubric, including;:

10



1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

e [f you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

e The code review must be completed by Wednesday, October 19th to receive
credit for the project

Notes

e There are multiple ways to define the average wind speed over a year. For this
project, we will define a year’s average as the average over the months that
belong to that year.

e Remember that arrays are zero-indexed and months are one-indexed.

References

e The Java API: https://docs.oracle.com/javase/8/docs/api/
e The Oklahoma Mesonet: http://www.mesonet.org

e The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

e JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

11


https://docs.oracle.com/javase/8/docs/api/
http://www.mesonet.org
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against our set of tests. These unit tests will not be visible to
you, but the Web-Cat server will inform you as to how many tests your code
passed/failed. This grade component is proportional to the fraction of tests
that your code passes (so 22.5 points means that your code passed half of the
tests).

Style/Coding: 20 points
The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader during the code review. Any errors
in your program will be noted in the code stored on the Web-Cat server, and
two points will be deducted for each. Possible errors include:

e Non-descriptive or inappropriate project- or method-level documentation
e Missing or inappropriate inline documentation

e Inappropriate choice of variable or method names

o Inefficient implementation of an algorithm

e Incorrect implementation of an algorithm

e Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

12



Bonus: up to 5 points
You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late (up to 48 hours). Submissions will not be accepted more than 48
hours after the deadline.

13



