
CS 2334
Project 4: Graphical User Interfaces

November 1, 2016

Due: 1:29:00 pm on Wednesday, Nov 16, 2016

Introduction

For the last three projects, you have been focused on reading data from files and
constructing large, efficient representations from the data. For this project, we will
focus on presenting these data to a user, enabling the user to explore the statistics
associated with specific stations, variables and years.

Your implementation from project 3 will continue to serve as the basis for data
loading and representation (with minimal changes). What you will add is a graphical
user interface that interacts with the user.

Your final product will:

1. Load in files that describe the set of measures taken (the variables) at the
stations, and the set of stations.

2. Allow the user to specify a data file to load (multiple data load requests will
be allowed).

3. Allow the user to select a station, a variable of interest and a set of years of
interest.

4. Report detailed information about the station and the statistic, as well as the
minimum, maximum and average of the selected statistic over the range of
years that has been specified.

1

Learning Objectives

By the end of this project, you should be able to:

1. Create a menu that is attached to a frame.

2. Make use of JLists that present a set of options to a user and allow the user to
select one or more of these options

3. Create a set of components that display textual data to a user

4. Create the listeners necessary to allow the GUI to respond to user input

5. Continue to exercise good coding practices for Javadoc and for testing

Note that this project relies heavily on your reading of the Java API documenta-
tion, and the examples. We have tried to provide you with a good set of hints, but,
fundamentally, you have to pull the details out of the documentation.

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� The UML is a guide to the new classes and methods that you will implement.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

2

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process. Note that it
is very challenging to write JUnit tests for GUIs – we do not expect you to
provide these here. However, we do expect that you will provide unit tests for
the “back end” of your code and that you will test your GUI in person.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation

� This description and supporting materials are available at:
http://cs.ou.edu/~fagg/classes/cs2334/projects/project4

� We will be providing parts of our project 3 implementation on Canvas.

� In Eclipse, copy your project3 folder to a new project4 project. Within this
project, your data should be located in the data directory (folder). The data
will be the same as for the last project.

� Download project4.zip from the project directory. This zip file contains a
partial implementation of the WeatherFrame class and new versions of the
geoinfo.csv and DataTranslation.csv files. Copy the former into your src direc-
tory; and the data files into your data directory.

Example Interactions

Below is a set of screen-shots for our implementation. Your implementation may
have a different look. However, it must have the essential functionality, as described
in the next section.

3

http://cs.ou.edu/~fagg/classes/cs2334/projects/project4

When your program starts up, it will immediately load the station and variable
configuration files, but will not load a data file. Given the loaded information, here
is the initial state of the interface:

� A file menu is presented in the upper-left corner of the window.

� The green area contains three list interfaces that allow the user to select a
stationId, a variable and one or more years. Only one station and variable
may be selected at any one time. However, any combination of years can be
selected.

� The dark gray area displays the selected station (ID, Name and City), the
selected variable (ID, Units and Description), and the maximum, average and
minimum for the selected station, variable and years. For the minimum and
maximum values, the dates of the minimum and maximum are also shown.

4

When the file menu is selected, the full menu opens:

If Exit is selected, then the program exits (by calling System.exit(0)).
If Open Data File is selected, then a file chooser is opened:

5

� If any of the allData files are selected, then your program will begin to load the
data. While the data are loading, the cursor changes to an animated clock to
indicate that your program is busy. This can be accomplished by setting the
Frame’s cursor to: Cursor.getPredefinedCursor(Cursor.WAIT CURSOR).

� If a file is specified that does not exist, your program should open an error win-
dow. This can be accomplished using JOptionPane.showMessageDialog()

� If an Exception is thrown while loading the file, then your program should also
open an error window.

Here is one example of an error window:

6

After loading, your program will display statistics about the selected station and
variable for all years:

Another example:

7

Specific years can be selected:

8

A few other examples:

Note: the 0000-00-00 occurs because 2016 does not contain data for the months of
November and December. Hence, the min/max for December is an invalid DataDay,

9

which reports 0000-00-00 as its date. Because of our implementation of isLessThan
and isGreaterThan, this invalid day overrides all of months that contain data.

10

11

GUI Layout

Below is a sketch of our GUI layout. Here, we are describing the key GUI components
and their approximate layout. Implicit in the way we have drawn things is also a
containment relationship. Some of the relevant instance variables are also listed.

WeatherFrame

FileMenuBar

SelectionPanel DataPanel

JList: stationList

JLabel:
stationLabel

JScrollPane:
stationListScroller

JList: variableList

JLabel:
variableLabel

JScrollPane:
variableListScroller

JList: yearList

JLabel:
yearLabel

JScrollPane:
yearListScroller

JLabel:
stationLabel

JTextField:
stationIdField

JTextField:
stationNameField

JTextField:
stationNameField

JLabel:
variableLabel

JTextField:
variableIdField

JTextField:
variableUnitsField

JTextArea:
variableDescription

JLabel:
maxLabel

JTextField:
maxDateField

JLabel:
maxValue

JLabel:
averageLabel

JLabel:
averageValue

JLabel:
minLabel

JTextField:
minDateField

JLabel:
minValue

JMenu JMenuItem JMenuItem

The WeatherFrame contains three main components: a FileMenuBar, a Se-
lectionPanel and a DataPanel.

The FileMenuBar contains a single JMenu, which, in turn, contains two JMe-
nuItems.

The SelectionPanel contains a grid of sub-components: the rows correspond
to the station, variable and the years to be selected. The first column contains the
labels, while the second column contains a set of JLists that we will use for selection.
Note that each JList is contained within a JScrollPane. These scroll panes allow
us to have a JList than will always fit within the allotted space. Should a list be
too large, the JScrollPane will automatically show a scroll bar on the right hand
side of the list.

The DataPanel presents information according to what the user has selected.
A set of labels are presented in the first column. The remaining columns are either
JTextField or JTextArea objects and are used to display specific Strings.

12

UML Design

You will adopt your implementation from project 3 with minimal changes (detailed
below). Below are the new classes that you will be implementing/modifying for this
project.

DataPanel

-stationLabel: JLabel
-variableLabel: JLabel
-minLabel: JLabel
-maxLabel: JLabel
-averageLabel: JLabel
-stationIdField: JTextField
-variableIdField: JTextField
-minVal: JTextField
-maxVal: JTextField
-averageVal: JTextField:
-variableUnitsField: JTextField
-minDateField: JTextField
-maxDateField: JTextField
-stationNameField: JTextField
-stationCityField: JTextField
-variableDescription: JTextArea

+DataPanel()
+updateData() «synchronized»

SelectionPanel

-stationList: JList<String>
-variableList: JList<String>
-yearList: JList<String>
-yearListModel: DefaultListModel<String>
-yearListValues: ArrayList<Integer>
-stationListScroller: JScrollPanel
-variableListScroller: JScrollPanel
-yearListScroller: JScrollPane
-stationLabel: JLabel
-variableLabel: JLabel
-yearLabel: JLabel

+SelectionPanel()

JPanel

FileMenuBar

-menu: JMenu
-menuExit: JMenuItem
-menuOpen: JMenuItem
-fileChooser: JFileChooser

+FileMenuBar()

JMenuBar

JFrame

ArrayList<Integer>
WeatherFrame

-fileMenuBar: FileMenuBar
-stationDefinitionList: StationDefinitionList
-dataDefinitionList: DataDefinitionList
-selectionPanel: SelectionPanel
-dataPanel: DataPanel
-COLUMN_1_FIELD_WIDTH = 10: int
-COLUMN_2_FIELD_WIDTH = 20: int

+WeatherFrame()
+loadData(String fileName): void

KeyConstraints

-next: KeyConstraints

+KeyConstraints()
+getNext(): KeyConstraints
+addEnd(KeyConstraints elem): void

1

1

1

Class Design Outline

Your project 3 code will largely stay the same. The key difference is that we want to
be able to compute statistics in some cases over a subset of the available keys. For
example, in this project, we would like to compute the maximum day for a statistic
over years 2001, 2002, 2003, but exclude 2004 and 2005, even though all five years
have been loaded. We will represent these “constrained queries” using a list of keys
that we want to include in a given statistic computation.

13

These constraints will be represented using an instance of the KeyConstraints
class. For this project, we will only constrain the years within a DataSet. However,
in the next project we will also constrain the months within a DataYear and the
days within a DataMonth. In order to represent these relationships in an efficient
manner, the KeyConstraints class implements a linked list of constraints: the Key-
Constraints over the years will point to a next KeyConstraints over the months.
Likewise, the KeyConstraints over the months, will point to a KeyConstraints
over the days.

Here are the key changes to your project 3 code:

� All getStatisticAverage(), getStatisticMinDay() and getStatisticMax-
Day() methods will now take an additional KeyConstraints parameter. This
parameter will be added to the end of the parameter list for each method im-
plementation.

� DataDay will accept this parameter and ignore it.

� The MultiStatisticsAbstract class will use the KeyConstraints object to
constrain which keys are searched in the iteration process. Furthermore, when
this class calls the getStatisticXX() method on its sub-objects, it will pass
constraints.next(). Note that if a constraint reference is ever null, then the
getStatisticXX() method should use all of the available keys, as you are already
doing in project 3.

� The StationDefinition and StationDefinitionList classes will simply pass
the constraint down to the next level.

� The DataYear class:

– Add the following property:

pr i va t e s t a t i c TreeSet<Integer> yearList ;

– Initialize this property outside of your constructor.

– Every time a day is added to the year, add the day’s year to this set.

– Provide the following accessor:

pub l i c s t a t i c ArrayList<Integer> getYearList ()
{

r e turn new ArrayList<Integer>(yearList) ;
}

14

Below are the implementation notes for our Graphical User Interface:

� For this project, we are using GridBagLayout as the layout manager for our
frames and panels.

� WeatherFrame: this class is-a JFrame and is the primary window of the
interface.

– Complete the implementation of the constructor

– Complete the implementation of loadData()

� FileMenuBar is an inner class of WeatherFrame that is-a JMenuBar.

– Complete the menu creation process

– Complete the implementation of the open menu listener

� SelectionPanel is an inner class that is-a JPanel that presents the elements
through which the user will select the station, variable and year(s). This class
contains a JList for each selection type.

– Complete the creation of the JLists

– Implement the layout of the components

� DataPanel is an inner class that is-a JPanel that displays the selected infor-
mation and the associated statistics.

– Complete the creation of the JTextFields

– Implement the layout of the components

– Complete the implementation of the updateData() method. Note that
this method is declared as being synchronized. While this keyword is
beyond the scope of this class, you should leave it in place.

Notes

� Build your GUI incrementally. Focus on the “look and feel” of your GUI before
you add functionality. Then, add functionality one piece at a time.

� The use of multiple classes to represent the GUI gives us the opportunity
to logically partition the problem into smaller pieces. Because these pieces are
largely independent of one-another, this allows us to keep the complexity down.

15

� By setting up all of these classes (but one) as inner classes of a larger frame
class, this allows us to easily handle the dependencies between the various GUI
classes. In particular, inner classes have the ability to access variables and
methods of the outer class, even when they are private. For example, an inner
class can refer to the outer class instance using:

WeatherFrame.this

and, hence, access variables and call methods using:

WeatherFrame.this.stationInfoList

WeatherFrame.this.setCursor()

In addition, one inner class can access pieces of another inner class. For exam-
ple, the SelectionPanel instance can tell the DataPanel instance to update
using:

WeatherFrame.this.dataPanel.updateData()

� JMenuItems have ActionListeners attached to them to implement the func-
tionality of selecting a menu item.

� You can create a reference to your data directory this way:

new File(”./data”)

� JLists present a list of items to the user and allow the user to select one (or
possibly more). See the reference section below for a useful link that talks
about many options.

When the items in the list are known a priori and won’t change, the simple
way to create a JList is to hand it an array of Strings – one for each item. You
can then tell the JList to select the first item in the list automatically:

setSelectedIndex(0)

A SelectionListener can then be added to respond to any change in what is
selected. A change can be either the deselection of an item or the selection of
an item (note that most “clicks” involve a sequence of deselection followed by
selection). The currently selected element (if we assume that there is only one)
can be read from the JList using getSelectedValue().

If a JList allows you to select more than one item, you can access the list of
indices (in the presented list) using getSelectedIndices().

When the items are not known a priori or will change with time (as is the case
with our list of years, which we won’t know until we have loaded the data), we

16

must use some form of ListModel. The DefaultListModel class is a List
to which items can be added or cleared from. Every time this list changes,
the DefaultListModel will automatically inform the JList that the list has
changed, which, in turn, will cause the display to be updated. To attach a
ListModel to a JList, you include a reference to the model in your call to the
JList constructor.

� Each JList is placed inside of a JScrollPane. This tells the GUI to use a
fixed size pane to present the information, but to provide scroll bars if the
information is too large to display in the fixed area. If the information fits,
then the scroll bar is automatically hidden.

� JTextFields, by default, are about receiving text input from a user. However,
they can be used as output-only components by setting their editable property
to false. They are convenient for this because we can define their width in terms
of the number of characters that they should hold. And, the text presented
in the field can be selected and copied by a user through the use of mouse
operations.

� JTextArea will display multi-line text. I recommend the following configura-
tion:

setWrapStyleWord(true) and setLineWrap(true)

� Depending on server load, real-time grading of submissions may be halted at
any time. Our priority is to let groups submit solutions in a timely fashion. If
we do halt online grading, we will attempt to reenable it at a time where the
load on the server is low. This means that you should not expect feedback on
solutions that are submitted near to the deadline.

17

Final Steps

1. Generate Javadoc using Eclipse for all of your classes.

2. Open the project4/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed (five primary classes plus four JU-
nit test classes) and that all of your documented methods have the necessary
documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29:00 pm on Wednesday, November 16 (i.e, before class begins)

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 2 specification.

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Doodle to schedule these (a link will be posted on Canvas). You
must attend the code review during your scheduled time. Failure to do
so will leave you only with option 2 (no rescheduling of code reviews is
permitted). Note that schedule code review time may not be used for
help with a lab or a project

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project

� Both group members must be present for the code review

18

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code

2. The documentation that has been provided (all three levels of documen-
tation will be examined)

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

� The code review must be completed by Monday, November 21st to receive
credit for the project

Notes

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� JLists: https://docs.oracle.com/javase/tutorial/uiswing/components/
list.html

� JFileChooser: https://docs.oracle.com/javase/tutorial/uiswing/components/
filechooser.html

� Menus: https://docs.oracle.com/javase/tutorial/uiswing/components/
menu.html

19

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/list.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html
https://docs.oracle.com/javase/tutorial/uiswing/components/menu.html

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against our set of tests. These unit tests will not be visible to
you, but the Web-Cat server will inform you as to how many tests your code
passed/failed. This grade component is proportional to the fraction of tests
that your code passes (so 22.5 points means that your code passed half of the
tests).

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader during the code review. Any errors
in your program will be noted in the code stored on the Web-Cat server, and
two points will be deducted for each. Possible errors include:

� Non-descriptive or inappropriate project- or method-level documentation

� Missing or inappropriate inline documentation

� Inappropriate choice of variable or method names

� Inefficient implementation of an algorithm

� Incorrect implementation of an algorithm

� Incomplete coverage of your Unit Tests. We expect that your unit tests
will test all lines of your code

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

20

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late (up to 48 hours). Submissions will not be accepted more than 48
hours after the deadline.

21

