
Lab 1: Programming Tools
CS 2334

August 24, 2017

Introduction

The goal of this laboratory is to get everyone up to speed in using Eclipse, the
Java compiler, Javadoc and Web-Cat submission. For most, this will require a short
period of time to complete. Subsequent labs will occupy the full lab session period.

Objectives

By the end of this laboratory exercise, you should be able to:

1. Install Java version 8 and Eclipse

2. Compile and execute a Java program in Eclipse

3. Apply basic String-manipulation methods to parse and create Strings

4. Create a class and construct an instance of that class

5. Use Javadoc to generate documentation for your code

6. Submit your program and documentation for grading

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

1

Instructions

1. You should have already done the following:

� Download and install SE Development Kit version 8 from the following
address:

– http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html.

� The use of Java 8 is required for this course.

You can check which version of Java you have installed by opening the
Terminal (Mac/Linux) or the Command Prompt (Windows) and running
the command java -version

� Download and install the Eclipse IDE for Java Developers from
http://www.eclipse.org/downloads/. We strongly recommend that you
use Neon (version 4.6).

� Install the Web-Cat submission plug-in to Eclipse. See:
http://cs.ou.edu/∼fagg/classes/cs2334/webcat/webcat.html

2. In Eclipse, create a new Java Project called lab1.

Select File/New Java Project

or

Select File/New Project/Java Project

3. In this project, create a class called Driver.

� Select the lab1 project in the Package Explorer

� Right-click and select New/Class

� Give the class a name (Driver), select the Default package, and click
Finish

4. Task 1: In your Driver class, create the main method. The main method
should print the text Hello, world! to the screen.

5. Compile and execute your program. Left-click on the green Start button on the
top tool bar. This should result in the string being displayed in your console
window. Task 1 is complete.

2

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/
http://cs.ou.edu/~fagg/classes/cs2334/webcat/webcat.html

6. Task 2: Create a class called Course. This class must be in the Default package
and will represent the course enrollment and TA coverage for a single course.

This class must have the following properties:

� It must have one instance variable that is a String array of size 4 called
info

� It must have one constructor:

pub l i c Course (String input)

where input is guaranteed to be a String of the form a, b, c such that:

– a is a string consisting of alphanumeric and white space characters,
and

– b, c are strings consisting of only numerical characters (and no spaces).

For example, “Java I,100,6” is such a string where a = “Java I”, b =”100”,
and c = “6”. For this program, we’re interpreting a to be the course name,
b to be the course enrollment, and c the number of teaching assistants
assigned to the course.

This method will store a in all capital letters in info[0], store b in
info[1], store c in info[2], and store one of two strings in info[3].
If there are at most 30 students per TA, then this string must be set to
“Well Covered”; otherwise, this string is set to “Poorly Covered”. Note
that this last operation requires the use of type conversions.

� It must have a method with the following header (we also call this a
prototype):

pub l i c String toString ()

which returns a String of the form:

Course : info [0] , enrollment : info [1] , teaching assistants : info [2] , ←↩
info [3]

where info[i] is the value of the ith element in the array.

Note 1: The arrow in the above string is there to show that the line
wraps. It is not printed and your output should not contain a newline
character here.

3

Note 2: The spaces and capitalization matter.

Note 3: When an object is passed into a method such as System.out.print(),
the String returned by the object’s toString() method is printed in place
of the object! All objects have the toString() method and you can over-
ride it to suit your needs, as you have done for this step.

� All of its methods and data must be documented using Javadoc (see below
for details).

7. Replace your Driver class main method with the following:

pub l i c s t a t i c void main (String [] args) throws IOException

{
BufferedReader br = new BufferedReader (new InputStreamReader (System . in)) ;
String input = br . readLine () ;

// Add two more l i n e s o f code here .

br . close () ;
}

After the first two lines of code are executed, the input variable will contain
the string of characters that have been typed by the user in the console (up to
when ENTER is pressed).

8. Use the input string to create an instance of the Course class and print it out.

9. Test your code. Here are some examples. The inputs are to be typed into the
console. Your program will then respond in the console with the output.

Input:

Java I , 100 ,6

Output:

Course : JAVA I , enrollment : 100 , teaching assistants : 6 , Well Covered

4

Input:

Java II , 185 ,4

Output:

Course : JAVA II , enrollment : 185 , teaching assistants : 4 , Poorly Covered

10. Generate Javadoc using Eclipse.

� Select your project (e.g., by selecting either the Driver.java or Course.java
file)

� Select Project/Generate Javadoc...

� Select Private visibility

� Use the default destination folder

� Click Finish

11. Open the lab1/doc/index.html file using Eclipse or your favorite web browser.
Check to make sure that both of your classes are listed and that all of your
documented methods have the necessary documentation.

12. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Project (Class) Documentation

Below the import statements at the top of every java source file (and above the class
declaration), you must include a documentation block at the top of the file that
includes the following:

/**

@author <your name(s)>

@version <today’s date>

Lab <number>

<A short, abstract description of the file>

*/

5

Note that the notation:

<some text>

indicates that you should provide some information and not actually write the less-
than and greater than symbols. Also, the double splats (stars) at the beginning of
the comment are necessary to be recognized by Javadoc as being important.

Instance/Class Variable Documentation

As we start to implement classes that contain either instance or class variables (more
on the difference in later labs), you must have a line of documentation for each
of these variables. For example, consider a Person class. Here are some example
documentation lines with variable declarations:

/** First name of the Person */

String firstName;

/** Last name of the Person */

String lastName;

/** Unique identifier */

int idNumber;

Note that this Javadoc format for documentation (with the double splat) is not
required for variables defined locally within a method. Nevertheless, you still need
to document the meaning of your variables.

6

Method-Level Documentation

Every method must include documentation above the method prototype using stan-
dard Javadoc markup. This documentation should be sufficient for another program-
mer to understand what the method does, but not the details of how the method
performs its task. For example, consider a method that will test whether a value is
within a range and whose prototype is declared as follows:

public static boolean isInRange(double min, double max, double value)

The documentation for this method will be placed above the prototype in your
java file and might look like this:

/**

Indicate whether a value is within a range of values

@param min Minimum value in the range

@param max Maximum value in the range

@param value The value being tested

@return True if value is between min and max. False if outside

this range.

*/

Note that this example includes all the required documentation elements:

� A short, intuitive description of what the method does (not how it does it),

� A list of the parameter names and a short description of the meaning of the
parameters, and

� A short description of the return value.

Inline Documentation

Inside of each method, you must also include documentation that describes how a
method is performing its task. This documentation should be detailed enough for
another programmer to understand what you have done and to make modifications
to your code. Typically, this documentation is preceded by “//” and occupies a
line by itself ahead of the code that is being documented. While each line of code

7

could be documented with its own documentation line, it is typically not necessary
or appropriate. Instead, we typically use a single documentation line to capture what
a small number of code lines is doing.

In addition, inline documentation should be done at a logical level and should
not simply repeat what the line of code says.

Here is an example:

public static boolean isInRange(double min, double max, double value)

{

// Check lower bound

if (value < min)

{

return false;

}

// Check upper bound

if (value > max)

{

return false;

}

// Within the boundaries

return true;

}

Program Formatting

Our Web-Cat server will enforce a particular program formatting standard. In ad-
dition to the project/class- and method-level documentation, it will also check for
several other items, including:

� Proper indentation. Indents must be done with spaces only (and not tabs).

� A space between a conditional keyword (such as if or while and the following
open parenthesis.

� Curly brackets on their own lines.

� Code blocks surrounded by curly brackets. For example, an if (...) statement
must be followed on the next line with an open curly bracket.

8

� if and while must be followed by a space, then an open parenthesis.

� Lines with at most 120 characters.

� Use of all declared variables.

� Use of all import statements.

Note that Eclipse can be configured to automatically do much of this formatting
for you (see our Web-Cat page).

Submission Instructions

Before submission, finish testing your program by executing your main() method. If
your program behaves as you expect, then you are ready to attempt a submission.
Here are the details:

� All required components (source code and compiled documentation) are due
on Saturday, August 26, 48 hours after the end of your lab session.

� Prepare and submit your program:

1. Select your project.

2. From the Project menu, select Submit Assignment.

3. Under Select the assignment to submit, select Lab1: Programming Tools.

4. Click Change Username or Password.... Enter your Web-Cat username
and password. Click OK. You should only need to do this step once per
session.

5. Click Finish.

6. Your browser should automatically open a Web-Cat page that shows your
submission being graded. After a short wait, the page will show a report
of your submission. See the main class web page for a link that describes
the Web-Cat output.

� Don’t worry about the submission step – you will be able to submit multiple
times and view the automatic feedback and grade each time.

9

� At some time after you submit your code, the server will give you a report with
some items automatically graded. How fast the server provides this report
depends on many factors, including how many others are submitting at the
same time. Until the deadline, you may use the report to improve your code
and submit again.

� The Eclipse plug-in will not work well for a small number of you. For a direct
method of submission, see:
http://cs.ou.edu/∼fagg/classes/cs2334/webcat/webcat.html

Hints

� See the String class API for how to split and interpret Strings.

� See the Integer class API for how to interpret Integers.

� The main class web page has a link to the Java API documentation.

10

http://cs.ou.edu/~fagg/classes/cs2334/webcat/webcat.html

Grading Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is proportional to the fraction
of tests that your code passes (so 22.5 points means that your code passed half
of the tests)

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described above will result in a
subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

11

If you do not submit compiled Javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although no
points will be deducted, the issues should be addressed in future submissions
(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for one day after the
deadline. In these cases, you will still have the benefit of the automatic feed-
back. However, beyond ten minutes late, you will receive a score of zero.

12

