
Lab 2: Unit Testing
CS 2334

August 31, 2017

Introduction

Producing quality code requires us to take steps to ensure that our code actually
performs as we expect it to. We must write careful specifications for each method
that we implement. For a given method, this includes what the inputs are (i.e.,
the parameters and their expected values), and the results that are to be produced
(return value and side effects). Once a method or group of methods is implemented,
we must also perform appropriate testing. Unit testing is a formal technique that
requires us to implement a set of tests that ensure that each piece of code is exercised
and produces the correct results. In practice, each time a code base is modified, this
set of tests is executed before the code is released for general use.

In this laboratory, we will use the JUnit tool to produce and evaluate a set of
tests. We have provided a specification and implementation of a couple classes. Your
task is to write a set of tests for one of these classes, and discover the bugs in our
implementation and fix them.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Read and understand method-level specifications

2. Read and understand previously written code

3. Create JUnit test cases

1

4. Use JUnit tests to discover bugs and to ultimately verify correctness of newly
modified methods

5. Correct all bugs in the code base so that all tests pass successfully

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Check to see if the EclEmma plug-in is installed:

(a) Help menu: select About Eclipse Platform / Installation Details

(b) You will see a list of installed plugins. If EclEmma is on the list, then you
are done.

2. If not already installed, then install the EclEmma plug-in:

(a) Help menu: select Install new software

(b) Work with box: enter http://update.eclemma.org

(c) Select EclEmma from the list. Click Next

(d) Read and accept the license agreement. Click Finish

3. Import the initial lab 2 implementation into your Eclipse workspace:

(a) Download the lab 2 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

(b) File menu: Import

(c) Select General/Existing Projects into Workspace and then click Next

(d) Select archive file: browse to the lab2.zip file

(e) Click Finish

(f) Once you create the new project, it may not initially know where to find
the standard Java libraries (it varies depending on your configuration).

2

http://update.eclemma.org
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab2/lab2.zip

i. Project menu: Select properties

ii. Select Java Build Path / Libraries

iii. If the JRE System Library is not listed, then select Add library: JRE
System Library and click Next. Select Workspace default. Click OK

iv. If the JUnit Library is not listed, then select Add library: JUnit and
click Next. Select JUnit 4. Click Finish

v. Click Apply and then OK

4. Carefully examine the code for the Gadget, GadgetTest and UtilityBelt classes.
The implementations of the Gadget and GadgetTest classes are correct and
complete. However, the UtilityBelt class has a number of bugs in it, which we
will find over the course of solving this lab.

3

Unit Tests

Within the lab2.zip file, we have included the GadgetTest class as an example. Here
is a piece of this class:

import org . junit . Test ;
import org . junit . Assert ;

/**
* Test ing c l a s s f o r Gadget ob j e c t
*

* @author Monique Shotande
* @version 08/31/17
*/

pub l i c c l a s s GadgetTest

{
/**
* Test the empty Gadget con s t ruc to r
*/

@Test

pub l i c void testEmptyGadgetConstructor ()
{

Gadget gadget = new Gadget () ;

// Check that the name i s nu l l , and the p r i c e and weight are zero
Assert . assertNull (”Empty cons t ruc to r : NULL name” , gadget . getName ()) ;
Assert . assertEquals (”Empty cons t ruc to r : no weight ” ,

0 , gadget . getWeight () , 0 .00001) ;
Assert . assertEquals (”Empty cons t ruc to r : no p r i c e ” ,

0 , gadget . getPrice () , 0 .00001) ;
}

/**
* Test the Gadget con s t ruc to r with only a St r ing parameter
*/

@Test

pub l i c void testStringParameterConstructor ()
{

String testGadgetName = ”Gappling gun” ;
Gadget gadget = new Gadget (testGadgetName) ;

// Check that the name should match the i n i t i a l parameter ,
// and the p r i c e and weight should be zero
Assert . assertEquals (” S t r ing Parameter Constructor : name” ,

testGadgetName , gadget . getName ()) ;
Assert . assertEquals (” S t r ing Parameter Constructor : no weight ” ,

0 , gadget . getWeight () , 0 .00001) ;
Assert . assertEquals (” S t r ing Parameter Constructor : no p r i c e ” ,

0 , gadget . getPrice () , 0 .00001) ;
}

4

/**
* Test the Gadget con s t ruc to r us ing a s t r i n g parameter and a double parameter
* f o r the name and weight , r e s p e c t i v e l y
*/

@Test

pub l i c void testDoubleParameterConstructor ()
{

String testGadgetName = ”Lock pick ” ;
double testGadgetWeight = . 5 7 ;
Gadget gadget = new Gadget (testGadgetName , testGadgetWeight) ;

// Check that the name and weight should match the i n i t i a l
// parameters and that the p r i c e should be zero
Assert . assertEquals (”Double parameter con s t ruc to r : name” ,

testGadgetName , gadget . getName ()) ;
Assert . assertEquals (”Double parameter con s t ruc to r : weight ” ,

testGadgetWeight , gadget . getWeight () , 0 .00001) ;
Assert . assertEquals (”Double parameter con s t ruc to r : no p r i c e ” ,

0 , gadget . getPrice () , 0 .00001) ;
}

/**
* Test the complete con s t ruc to r and the g e t t e r s
*/

@Test

pub l i c void testFullConstructor ()
{

String testGadgetName = ”Gas p e l l e t s ” ;
double testGadgetWeight = 2 . 0 5 ;
double testGadgetPrice = 12 . 5 3 ;
Gadget gadget = new Gadget (testGadgetName , testGadgetWeight ,

testGadgetPrice) ;

// Check that the name , weight , and p r i c e should match the
// i n i t i a l parameters
Assert . assertEquals (” Fu l l c on s t ruc to r : name” , testGadgetName ,

gadget . getName ()) ;
Assert . assertEquals (” Fu l l c on s t ruc to r : weight ” ,

testGadgetWeight , gadget . getWeight () , 0 .00001) ;
Assert . assertEquals (” Fu l l c on s t ruc to r : p r i c e ” ,

testGadgetPrice , gadget . getPrice () , 0 .00001) ;
}
:
:

}

A unit test class is named to indicate which class it is responsible for testing
(e.g., GadgetTest will test the Gadget class). A unit test class contains one or more
methods. These methods are often named to indicate which parts of a class that
the method tests (e.g., allMutatorsTest and singleParameterConstructorTest). Each
test method is preceded by the @Test tag, to inform the compiler to configure the
method as one of the tests to be executed. This tag must be placed between the
method-level documentation and the method prototype.

5

Each unit test contains three sections of code, which may be intertwined:

1. Creation of a set of objects that will be used for testing

2. Calling of the methods to be tested, often storing their results

3. A set of Assertions that test the results returned by the method calls. Each
assertion is a declaration by the test code of some condition that must hold if
the code is performing correctly. A typical test will have several such assertions.

The fullConstructorTest() test method in GadgetTest.java, creates a Gadget ob-
ject with the name “Gas pellets”, weight 2.05 oz, and price 12.53 dollars. This test
confirms that each of these properties are set correctly during the construction of
the object instance. For example:

String testGadgetName = ”Gas p e l l e t s ” ;
double testGadgetWeight = 2 . 0 5 ;
double testGadgetPrice = 12 . 5 3 ;
Gadget gadget = new Gadget (testGadgetName , testGadgetWeight ,

testGadgetPrice) ;
:
:

Assert . assertEquals (” Fu l l c on s t ruc to r : weight ” ,
testGadgetWeight , gadget . getWeight () , 0 .00001) ;

queries the gadget object’s weight property via the weight getter method and then
compares it to the expected value of 2.05 (expected since this is the value that was
used in the call to the constructor). The first parameter to assertEquals (the String)
is a general description of the test that is used to report the specific tests that have
failed. The second parameter is the expected value, and the third parameter is the
test value. Remember that it is not appropriate to simply test the equality of two
doubles, since two double values can be arbitrarily close (or close enough) to one-
another and still not be exactly equal. Instead, this double version of assertEquals()
asks whether the two values are within 0.00001 of one another (specified by the fourth
parameter). If this is the case, then this assertion will pass. On the other hand, if
the returned weight is different than the expected value, then the test will fail.

The assertEquals() method works for ints, doubles and Strings.
The assertTrue() method will test an arbitrary condition. For example:

String testGadgetName = ”Rebreather ” ;
Assert . assertTrue (gadget . getName () . equals (testGadgetName)) ;

6

states the the name must be exactly equal to “Rebreather” (remember that String.equals()
requires an exact string match in order to return true). Through the use of this type
of assertion, one can check any Boolean condition. A link to the full documentation
code of the Assert class is given below.

Within Eclipse, you can execute a unit test by pressing the button (upper
tool pane) and selecting your unit test. A JUnit window pane will appear on the
left-hand-side of the interface and show you how many tests have passed/failed. If
a test fails, you will be able to click on it to see exactly which line resulted in the
failure. A failure indicates a bug in the implementation of your class (or in the test
itself).

EclEmma will highlight your tested code to indicate how well it is covered by the
unit tests. In particular, Eclipse will highlight each line of code accordingly:

� Green: the line has been “touched” by one or more tests

� Red: the line has not been touched

� Yellow: only one part of the branch (if, while, for, switch) has been touched
by the tests

Your goal is to have all of your tested class be highlighted in green (in fact, your
grade will depend on this). An exception to this is that some code will only execute
when failures occur. In some cases, we might choose to forego tests on these cases,
but it is rare for us to decide this.

When you are writing tests, you should not rely on your implementation to pro-
duce the expected values. Instead, you should work out by hand (or some indepen-
dent implementation) what the expected values should be. This way, your test is
independent of your implementation. Also, it is good practice to write your tests
before you write your methods.

UtilityBelt Unit Test

Your task for this lab is to write a set of unit tests for the methods in the UtilityBelt
class. Here is the procedure:

1. Create a new JUnit test class:

(a) In the package explorer, right-click on UtilityBelt.java

(b) Select New/JUnit Test Case

7

(c) Select New JUnit 4 test

(d) The source folder should be lab2/src (the default package)

(e) The name should be UtilityBeltTest

(f) The class under test should be UtilityBelt

(g) Click Finish. This will create and open a new class called UtilityBeltTest

2. Write a set of tests that confirm that all methods of the UtilityBelt class perform
correctly. Note that in each of these tests, you will need to create at least one
UtilityBelt object and populate it with a number of Gadget objects with various
names, weights and prices. The set of tests that you write must cover all of the
cases in the methods in this class. This means that you must test all possible
paths through the code (e.g., every if and else branch).

3. As you execute your tests, you will discover a number of errors in the UtilityBelt
implementation. Fix these errors and confirm that all of the bugs are resolved
using your unit tests.

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your project is selected, as are the Driver, Gadget, Utili-
tyBelt and Test classes

� Select Private visibility

� Use the default destination folder (this should be inside of your Eclipse
workspace, in lab2/doc)

� Click Finish

2. Open the lab2/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that that classes are listed and that all of your documented methods
have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

8

Submission instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and the UtilityBelt class is covered completely by your Util-
ityBeltTest class, then you are ready to attempt a submission. Here are the details:

� All required components (source code and compiled documentation) are due
48 hours from the end of your lab section (on Saturday, September 2). Sub-
mission must be done through the Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 2: Unit Testing area on the Web-Cat server.

References

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorials:
https://www.tutorialspoint.com/junit/index.htm

https://dzone.com/articles/junit-tutorial-beginners (setup in Eclipse)

9

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://www.tutorialspoint.com/junit/index.htm
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

10

If you do not submit compiled javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

11

