Lab Exercise 9
CS 2334

October 19, 2017

Introduction

In this lab, you will begin experimenting with Graphical User Interfaces (GUIs) in
Java. GUIs are defined as a hierarchical set of graphical components (hierarchy,
here, is in a has-a sense). At the top of the hierarchy is a component that is a
container of other components — in our case, this component is a JFrame. Other
components, such as JButton, JLabel, JTextField, and JRadioButton, provide
the individual pieces of the GUI with which the user interacts. JPanel objects
are components that also act as containers for multiple components, giving us a
convenient, logical way of grouping different parts of the GUI together.

Your task for the lab is to create a GUI for a binary calculator. The GUI will give
the user two text boxes in which to type operands (values) and a set of radio buttons
for selecting the type of binary operator. When the user presses the Calculate Result
button, the GUI will compute and display the result in a non-editable text field.

Learning Objectives

By the end of this laboratory exercise, you should be able to implement a simple
GUI by:

1. Creating a window
2. Adding various graphical components to the window

3. Responding to window events in a meaningful way

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation
1. Import the existing lab9 implementation into your Eclipse workspace.

(a) Download the lab9 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/1ab9/1lab9.zip

(b) In Eclipse, select File/Import
(c) Select General/Ezisting projects into workspace. Click Next
(d) Select Select archive file. Browse to the lab9.zip file. Click Finish

Binary Calculator

Below is an illustration of the graphical user interface for the calculator that we are
creating. The user enters two binary numbers into the two text fields. There are
three bit-wise operators provided to user: AND, OR and XOR. When the program
is first started, the AND button must be selected.

When the user clicks on the button Cualculate Result, depending on the operator
selected by the user, the binary result is calculated and displayed to the non-editable
result text field.

When the user enters the values 1701 and 1010 the input text fields, selects AND
(¢9) and clicks Calculate Result, the GUI presents the result of “ANDing” the two
binary numbers: 1000. Note that with the bit-wise AND operator, the result for bit
7 is the AND of bit 7 from each of the operands, and that the different bit positions
are independent of one-another.

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab9/lab9.zip

@-j Binary Calculator Window @
| 1101]
&

| 1010]
1000

Calculate Result

m& O] O~

Likewise, when the user supplies the same operands (1101 and 1010), selects OR
(1) and clicks Calculate Result, the GUI presents 1111 as the result.

@-j Binary Calculator Window M

| 1101]

|
| 1010

1111

Calculate Result

D& ®m| O~

Finally, when the user types the values 1101 and 0011 into the text fields, selects
XOR (") and clicks Calculate Result, the result of 1110 is displayed.

@] Binary Calculator Window ﬂ
| 1101]
| 0011]

1110

Calculate Result

D& O ®~

If the user enters an invalid number or leaves a text field blank, and then clicks
Calculate Result, an error message must be displayed just below the operand box.
Note that the result of the last valid computation is still displayed.

@J Binary Calculator Window ﬂ @J Binary Calculator Window ﬂ

| 11o1| | 1101]

| o012 | |
1110 1110

ERROR: Please enter a valid binary number.

Calculate Result

D& O @~

ERROR: Please enter a valid binary number.

Calculate Result

D& O @~

When the user closes the window, the program must terminate.

GUI Organization

Our binary calculator is organized using a set of four horizontal rows, as shown below:

The rows, each encapsulated by a JPanel, contain the following information:

1. The first operand (in a JTextField), operator (JLabel), the second operand
(JTextField), the equals sign (JLabel) and the result (JTextField)

2. An error message, which can be blank (a JLabel)
3. A Calculate Result button

4. A set of radio buttons for operator selection

Here, we have used a GridLayout of dimension 4 x 0 to organize the four JPanel
objects within the JFrame. Also, we have used a GridLayout of dimension 5 x 0
inside the top JPanel to organize the five text fields.

Use the following components in the design of your GUI:
e JFrame for the window.
e JPanel for the sub-panels.

e JButton for the button.

e JTextField instances for providing an editable input text box and a non-
editable output text box.

e JLabel instance for displaying the error message.

e ButtonGroup to tell the Java windowing system that only one operator but-
ton can be selected at any one time.

e JRadioButton instances for the radio buttons. Note that as soon as a JRa-
dioButton is clicked, the corresponding operator is displayed in the top JPanel.

Lab 9: Specific Instructions

There is only one class file, CalculatorFrame.java, that you must implement. The
skeleton is provided in lab9.zip.

1. Modify the class according to the instructions given in the comments

e Within the CalculatorFrame class, there is only the constructor and the
main() method.

e Be sure that the class name is exactly as given in the initial zip file.

e You must use the default package, meaning that the package field must
be left blank.

e Do not change the name for instance variables and method names.
e Do not add functionality to the classes beyond what has been specified.

e Don’t forget to document as you go!

2. Test your program by compiling and testing all possible inputs and conversions.

e Be sure that all of the bit-wise computations are correct. Note that it is
okay for your result to not have leading zeros.

e Make sure that the error message appears when the user tries to enter an
erroneous input, but disappears when correct inputs are given.

e You do not have any unit tests to write for this lab. All of your testing
will be done by interacting with the GUI. However, we will be testing your
code with a set of unit tests.

Hints

e Remember that your class is-a JFrame. This means that it will provide all of
the methods that are made available by JFrame. This is why we call super()
in Calculator Frame constructor.

e Your constructor should create all of the GUI components, hook them together,
and attach the appropriate ActionListeners.

e Your main function creates a single instance of CalculatorFrame and then
does nothing else.

e All of your inner, anonymous classes can “see” the instance variables.

o See the JRadioButton API documentation for information about how to ask
the radio button about whether it has been selected.

e See the JLabel API documentation for information about how to change the
text contained within the label.

e See the JTextField API documentation for information about making a text
field non-editable.

e The integer bit-wise operators in Java are &, |, and ~. Note that these are
different than the logical operators.

e There are many binary calculator tools available on the web that you can use
to check your results.

e Look carefully at Integer.toString() for something that will help with displaying
integers in binary. The Integer class also provides methods for converting
binary Strings into integers.

Final Steps

1. Generate Javadoc using Eclipse.

e Select Project/Generate Javadoc...
e Make sure that your project (and all classes within it) is selected

e Select Private visibility

e Use the default destination folder
e Click Finish.

2. Open the lab9/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission Instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and your classes are covered completely by your test classes,
then you are ready to attempt a submission. Here are the details:

e All required components (source code and compiled documentation) are due
at 7Tpm on Saturday, October 21. Submission must be done through the
Web-Cat server.

e Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 9: GUI Basics area on the Web-Cat server.

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 40 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed /failed.

Style/Coding: 25 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

e Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

e Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

e Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

e Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

e Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

10

