
Binary
Input/Output

Administrivia

•Project 4: Due on Monday
•Code reviews next week

•Project 5: Out next Monday

•Lab 12 coming soon

•Exam back soon

Andrew H. Fagg: CS 2334: Binary I/O 2

File Abstraction

•Lowest level: Sequence of bytes
•We refer to this as a stream

•How we interpret each byte (or group of
bytes) depends on the context

Andrew H. Fagg: CS 2334: Binary I/O 3

Data Types

Different primitive data types in Java require
different amounts of space

•byte: 1 byte

•short: 2 bytes

• int/float: 4 bytes

•double: 8 bytes

Andrew H. Fagg: CS 2334: Binary I/O 4

Characters:
several options

•ASCII char: 1 byte
•Unicode: 2 bytes
•Extended Unicode: 3 bytes

Andrew H. Fagg: CS 2334: Binary I/O 5

Low Level Files

FileInputStream/FileOutputStream

•Byte-level interface to the file

•read() and write() “think” in terms of arrays
of bytes to be read and written

Andrew H. Fagg: CS 2334: Binary I/O 6

Character-Level Interaction

BufferedReader/BufferedWriter (you already
have experience with these):

•Read/write individual characters or entire
Strings

Andrew H. Fagg: CS 2334: Binary I/O 7

Buffering

•Storage devices store data in blocks of bytes
(512-2048 bytes in one block)

•Often more efficient to read/write entire
blocks than the equivalent size a few bytes at
a time

•BufferedReader reads an entire block at once
and stores data temporarily in memory

•BufferedWriter stores written data
temporarily in memory and then writes the
data when a block is complete

Andrew H. Fagg: CS 2334: Binary I/O 8

Data-Level Interaction
Want to store primitive types in the file
without having to deal directly at the byte
level
•DataInputStream/DataOutputStream

•readShort(), readLong(), readDouble()
•writeShort(), writeLong(), writeDouble()

•Your program must keep track of the
sequence that these primitive values are
stored in

Andrew H. Fagg: CS 2334: Binary I/O 10

DataInputStream/DataOutputStream example

Andrew H. Fagg: CS 2334: Binary I/O 11

Buffering for Primitive Data

Wrapping a BufferedOutputStream around a
FileOutputStream:

•Many variables may be written to the “file”,
but only occasionally are these written out to
the disk

•Added method: flush() – forces all buffered
bytes to be written to the disk immediately

Andrew H. Fagg: CS 2334: Binary I/O 13

Object-Level Interaction

ObjectInputStream/ObjectOutputStream

•Can read/write entire objects in one call

•Read/Write is recursive
• If an object contains references to other objects –

they are read/written, too

Andrew H. Fagg: CS 2334: Binary I/O 14

Object-Level Interaction

ObjectInputStream/ObjectOutputStream

•Class must implement the Serializable
interface
•Marker interface: we don’t have to implement

anything

Andrew H. Fagg: CS 2334: Binary I/O 15

Object-Level Interaction

Example…

Andrew H. Fagg: CS 2334: Binary I/O 16

Very Recursive

Collection demonstration

Andrew H. Fagg: CS 2334: Binary I/O 17

Very Recursive

When we write/read an object:

•All of the contents are written/read,
including other objects

•Copy stops before we make multiple copies
of objects

•Can keep a variable from being written using
the transient keyword

Andrew H. Fagg: CS 2334: Binary I/O 18

More about Serializable

•All instance variables must also be primitive,
Serializable or transient
•Same for their children…

•Class data are not included with objects

Andrew H. Fagg: CS 2334: Binary I/O 19

End of File

•Finding when you’ve reached the end of the
file is problematic in Java

•Many read() methods will return a special
value to indicate that the end of file has been
reached

•For DataInputStream and
ObjectInputStream: the EOFException will be
thrown

Caution

•Must match data format in input and output
operations
• If you write it as a byte, you read it as a byte
• If you write UTF-8, you read UTF-8
• If you write an object, you read object

•Order is important because streams are
sequential

Writing/Reading Objects

Code version matters. Imagine:

•File is written using one class definition

•The definition then changes (e.g., add a new
instance variable)

•ObjectInputStream will not know how to
map the bytes from the old implementation
to the new one.
•Will most likely see an Exception
•To force an Exception to be thrown when version

changes, change the UID:
private static final long serialVersionUID = 1L;

Andrew H. Fagg: CS 2334: Binary I/O 22

