Binary
Input/Output

Administrivia

*Project 4: Due on Monday
* Code reviews next week

*Project 5: Out next Monday
*Lab 12 coming soon
*Exam back soon

File Abstraction

*Lowest level: Sequence of bytes
* We refer to this as a stream

*How we interpret each byte (or group of
bytes) depends on the context

Data Types

Different primitive data types in Java require
different amounts of space

*byte: 1 byte
*short: 2 bytes
*int/float: 4 bytes
edouble: 8 bytes

* ASCIl char: 1 byte
*Unicode: 2 bytes
* Extended Unicode: 3 bytes

Characters:
several options

Dec HxQct Char Dec Hy Oct Himl Chr [Dec Hx Oct Himl Chr| Dec Hx 0ct Himl Chr
0 0 000 NUL (nall) 32 20 040 Space| 64 40 100 «#64; B | 96 60 140 `
1l 1 001 30H (start of heading) 33 21 041 &##33: ! G5 41 101 A 4 a7 6l 141 a: =2
2 & 002 5T¥ (start of text) 34 22 042 #3477 66 42 102 «#66; B | 95 52 142 «#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 53 143 &«#99; ©C
4 4 004 EOT (end of transmission) a6 24 044 $ 5 68 44 104 «#68; D (100 54 144 d d
5 5 005 ENQ (enquiry) 37 25 045 % % 69 45 105 «#69; E |10l 55 145 &«#101; =
6 & 006 ACE [acknowledge) 38 26 045 & = 70 46 106 «#70; F (102 66 146 f €
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 «#71; = |103 &7 147 «#103; 0
8 & 0l0 E3 (backspace) a0 28 050 (| 72 458 110 «#72; H (104 68 150 h h
9 9 0l1 TAE (horizontal tab) 4] 29 051)) 73 49 111 «#73: I (105 59 151 &#l05; 1
10 & 012z LF (NL line feed, new line)| 42 24 052 &#d2; 74 44 112 «#74; T (106 64 152 j 7
11 B 013 VT (wertical tah) 473 2B 053 «#43; + 75 AR 113 «#75: K (107 6B 153 &#l07; k
12 C 0l4 FF (NP form feed, new page)| 44 ZC 054 , | 76 4C 114 «#76; L (108 6C 154 l 1
13 D 015 CER (carriage return) 45 2D 055 -: - 77 4D 115 M: M (109 el 155 &#l09; I
14 E 0l 30 (shift out) 45 2E 055 . . 75 4E 116 N N |110 6E 155 «#110; n
15 F 0l7 3I (shift in) a7 2F 057 /: / 79 4F 117 797 0 |111 &F 157 &#ll1: o
16 10 020 DLE (data link escape) 48 30 060 0: 0 G0 50 120 «#80; P |112 70 160 &#ll2: p
17 11 021 DCl (dewice contkal 1) 49 31 061 1 1 gl 51 121 «#81; 00 |113 71 16l &#l13;: J
18 12 022 DpCZ (dewice control 2) B0 32 062 2 Z G2 52 122 &«#82: B |114 72 162 &#ll4: t
19 13 023 DC3 (dewice control 3) Bl 55 063 3 3 53 55 123 ͅ 5 |115 75 163 &#ll5; =
20 14 024 DC4 (dewvice contral 4) B2 34 064 «#52; 4 54 54 124 «#54; T |11 74 led &#lle; ©
21 15 025 NAE [(negative acknowledoge) 53 55 065 5 5 G5 55 125 U T |117 75 165 &#l17:; u
22 16 026 SYN (synchronous idle) B4 35 065 6 6 g6 L5 126 V VW |118 76 leg &#$l15; v
23 17 027 ETE (end of trans. block) EE 37 067 U 7 87 57 127 W: W |119 77 167 &«#ll9:; w
24 15 030 CiN (cancel) B6 35 070 8 8 G5 55 130 U X |120 78 170 Z20; =
25 19 031 EM (end of medium) 57 39 071 9 9 89 59 131 Y T |121 79 171 &«#121: ¥
26 lb 032 SUE (substitute) B8 34 072 : : Q0 S& 132 Z I |122 74 172 z =
27 1E 033 ESC (escape) 59 3B 073 ; ; 0l 5B 133 [[(123 7B 173 «#l23; !
28 1C 034 F5 (file =zeparator) G0 3C 074 < < az EC 134 \: % |124 7C 174 =#124:
29 1D 035 G5 (group separatar) 6l 3D 075 &#¥6l; = 03 ED 135]] [125 7D 175 &#lz25;)
30 1E 036 B% (record separator) 62 3E 076 z2! & 94 EE 136 «#94:; ~ (126 7E 176 &#l=6r ~
31 1F 037 U5 {(unit separator) 63 3F 077 ? 7 95 5F 137 _ _ [127 7F 177 &#lZ7; DEL

Source: www.LookupTables .com

Low Level Files

FilelInputStream/FileOutputStream
*Byte-level interface to the file

*read() and write() “think” in terms of arrays
of bytes to be read and written

Character-Level Interaction

BufferedReader/BufferedWriter (you already
have experience with these):

*Read/write individual characters or entire
Strings

Buffering

*Storage devices store data in blocks of bytes
(512-2048 bytes in one block)

* Often more efficient to read/write entire
blocks than the equivalent size a few bytes at
a time

e BufferedReader reads an entire block at once
and stores data temporarily in memory

* BufferedWriter stores written data
temporarily in memory and then writes the
data when a block is complete

Data-Level Interaction

Want to store primitive types in the file
without having to deal directly at the byte
level

*DatalnputStream/DataOutputStream

*readShort(), readLong(), readDouble()
ewriteShort(), writeLong(), writeDouble()

*Your program must keep track of the
sequence that these primitive values are
stored in

DatalnputStream/DataOutputStream example

Buffering for Primitive Data

Wrapping a BufferedOutputStream around a
FileOutputStream:

* Many variables may be written to the “file”,

but only occasionally are these written out to
the disk

* Added method: flush() — forces all buffered
bytes to be written to the disk immediately

Object-Level Interaction

ObjectIinputStream/ObjectOutputStream
*Can read/write entire objects in one call

*Read/Write is recursive

* If an object contains references to other objects —
they are read/written, too

Object-Level Interaction

ObjectIinputStream/ObjectOutputStream

*Class must implement the Serializable
interface

* Marker interface: we don’t have to implement
anything

Object-Level Interaction

Example...

Very Recursive

Collection demonstration

Very Recursive

When we write/read an object:

* All of the contents are written/read,
including other objects

*Copy stops before we make multiple copies
of objects

*Can keep a variable from being written using
the transient keyword

More about Serializable

*All instance variables must also be primitive,
Serializable or transient
e Same for their children...

*Class data are not included with objects

End of File

*Finding when you’ve reached the end of the
file is problematic in Java

*Many read() methods will return a special
value to indicate that the end of file has been
reached

*For DatalnputStream and
ObjectinputStream: the EOFException will be
thrown

Caution

* Must match data format in input and output
operations
*If you write it as a byte, you read it as a byte
* If you write UTF-8, you read UTF-8
* If you write an object, you read object

*Order is important because streams are
sequential

Writing/Reading Objects

Code version matters. Imagine:
*File is written using one class definition

*The definition then changes (e.g., add a new
instance variable)

*ObjectinputStream will not know how to
map the bytes from the old implementation
to the new one.

* Will most likely see an Exception

* To force an Exception to be thrown when version
changes, change the UID:

private static final long serialVersionUID = 1L;

