
Classes, Objects, and UML

Andrew H. Fagg: CS 2334: Classes and Objects 1



Notes

•Lab 1: grading this week

•Lab 2: available soon

•Catme: should have email invitation 
•Use for group formation

•Next Week: lab 3 and project 1

Andrew H. Fagg: CS 2334: Classes and Objects 2



Notes

•Advancing to the Data Structures course (CS 
2413) requires an A or B in at least one of 
1323 and 2334 (and at least a C in both)

•Programming team

Andrew H. Fagg: CS 2334: Classes and Objects 3



Lab 1 Lessons

Andrew H. Fagg: CS 2334: Classes and Objects 4



Lab 1 Lessons

•Should now have the essential tools running: 
Java, Eclipse, Web-Cat

•Web-Cat gives important feedback – use it

•Learn to read the documentation

•Learn to read the specification in detail
•Requirements are very precise

•Start early

Andrew H. Fagg: CS 2334: Classes and Objects 5



Andrew H. Fagg: CS 2334: Classes and Objects 6



Java Objects
Class: a means of creating new types

•Group data elements that describe some 
abstract concept 

•These data elements can be primitive data or 
other objects

•Provide methods that operate on these data 
elements

This is an important way to organize your data 
– and hence your coding!

Andrew H. Fagg: CS 2334: Classes and Objects 7



Java Objects
An object is one instance of a class

•Occupies a block of memory in the heap that 
contains the values of the data elements

•Each instance has its own memory

•The set of values stored in this memory block 
is called the state of the object

•In code, we refer to object instances using a 
reference to the memory block

Andrew H. Fagg: CS 2334: Classes and Objects 8



Instance Methods

Some specific types of instance methods

•Accessors: Methods used to report the state 
of objects 

•Mutators: Methods used to change the state 
of objects

Syntax: reference.method(parameters)

Andrew H. Fagg: CS 2334: Classes and Objects 9



Examples

•What is the state of a StringBuffer object?

•How can the state of the StringBuffer object 
be changed?

(StringBuffer API)

Andrew H. Fagg: CS 2334: Classes and Objects 10



Examples

What is the state for a Date object?

Andrew H. Fagg: CS 2334: Classes and Objects 11



Instance Methods: Special Cases

Some specific types of instance methods

•Getters: Accessor methods used to report the 
low-level state of objects 

•Setters: Mutator methods used to change the 
low-level state of objects

Andrew H. Fagg: CS 2334: Classes and Objects 12



Instance Methods: Special Cases

Mutator methods:

•If there are no methods that change the state 
of an object.  These are called immutable 
classes (e.g. String, Integer, Float classes)

•There may be many methods that change the 
object’s state (e.g. StringBuffer class).  We call 
these classes mutable

Andrew H. Fagg: CS 2334: Classes and Objects 13



Examples

Find examples of accessors and mutators in 
StringBuffer

•And String

Andrew H. Fagg: CS 2334: Classes and Objects 14



A Class is a Contract

The set of instance methods define the legal 
ways that an object may be accessed/changed
•All operations on an object: must always
leave the object in a consistent state
•Enforce through variable visibility and through 

proper method definition

•Best practice:
•On entry to a method: assume that the object is 

in a consistent state
•On exit, ensure that it is still consistent

Andrew H. Fagg: CS 2334: Classes and Objects 15



Examples

What would an inconsistent state be for a 
Triangle object?

•Properties: height, base width, area

Andrew H. Fagg: CS 2334: Classes and Objects 16



A Class as an “Encapsulater” 

•A class hides many details from the outside 
world

•The user of a class only has to worry about 
the class’ public interface
•Easier to understand how to use the class
•The implementation of the underlying class can 

change without the user knowing

Andrew H. Fagg: CS 2334: Classes and Objects 17



Unified Modeling Language (UML)

UML is a spatial representation that describes:

•The definition of a class

•How the different classes relate to on-
another

Andrew H. Fagg: CS 2334: Classes and Objects 18



Unified Modeling Language (UML)

 

Book 

-title: String 

-author: String 

-isbn: String 

+Book(myAuthor: String, myTitle: String, myISBN: String) 

+getTitle(): String 

+getAuthor(): String 

+getISBN(): String 
Andrew H. Fagg: CS 2334: Review 19



Unified Modeling Language (UML)

Let’s implement this class

Andrew H. Fagg: CS 2334: Review 20

 

Book 

-title: String 

-author: String 

-isbn: String 

+Book(myAuthor: String, myTitle: String, myISBN: String) 

+getTitle(): String 

+getAuthor(): String 

+getISBN(): String 



UML Class Diagrams

•Name of class at top

•Middle section contains data
• Name: type

•Bottom section contains methods
• Name(param1: type, param2: type…): return type

•Plus (+) means public

•Minus (-) means private

Andrew H. Fagg: CS 2334: Classes and Objects 21



Unified Modeling Language (UML)

Umlet tool:

http://www.umlet.com/

Andrew H. Fagg: CS 2334: Review 22

http://www.umlet.com/changes.htm


Classes & Objects (continued)

Andrew H. Fagg: CS 2334: Classes and Objects 23



Public vs Private Data

Can be a tough decision.
•What are the pros & cons?

Andrew H. Fagg: CS 2334: Classes and Objects 24



Public vs Private Data

•Public Pros:
•Easy access to all data by other classes
•Don’t have to implement getters and setters

•Public Cons:
•Can’t protect the data from other classes – easy 

to get into an inconsistent state
•Therefore, the class cannot make any guarantees 

about how it behaves

Andrew H. Fagg: CS 2334: Classes and Objects 25



Public vs Private Data

For this class:

•We want our classes to protect themselves

•All instance variables will be declared as 
private or protected (more on the latter 
soon)

•All external access to instance variables will 
be through public methods

Andrew H. Fagg: CS 2334: Classes and Objects 26



Putting it All Together

•TopHat exercise

Andrew H. Fagg: CS 2334: Classes and Objects 27



Instance vs Class Data

•Each object gets its own copy of instance 
data

•All objects in a class share one copy of class 
data
• In UML, class variables are underlined
• In the class definition, class variables are declared 

as static

Andrew H. Fagg: CS 2334: Classes and Objects 28



Example

Suppose we were going to design a post-it 
note application

•What is the state of the Note?

•How might the state be changed?
• Let’s make UML for this…

Andrew H. Fagg: CS 2334: Classes and Objects 29



Example

How are we going to store things like the 
number of characters that are allowed in a 
note?

•Why is instance data not appropriate for 
this?

Andrew H. Fagg: CS 2334: Classes and Objects 30



Class Variables

Only one copy of the variables for all instances 
in the class

•Declare as static:
private static final int maxCharacters = 100;

private static int numNotes = 0;

Andrew H. Fagg: CS 2334: Classes and Objects 31



Class Methods

•Class-level methods are labeled static in Java

•Invocation (execution):

Class.methodName(parameters)

Andrew H. Fagg: CS 2334: Classes and Objects 32



•Project 1 is live

•Lab 1 grades have been transferred  to 
Canvas

•Lab 2 grading has started

•Lab 3 is live

Andrew H. Fagg: CS 2334: Classes and Objects 33



Class Methods

Examine Math class on Java API

•How is Math different from String?

Andrew H. Fagg: CS 2334: Classes and Objects 34



Class Methods

•Many class methods have no access to 
instance data
•There is no object, so there is no instance data
•Example: examine toString() in Integer class for 

both instance and class methods

•But: if a static method in a class has access to 
an object reference, it can access the private 
instance variables of that object
•My opinion: this is poor language design.  Avoid 

doing this! Andrew H. Fagg: CS 2334: Classes and Objects 35



Instance Methods

•Are always called with respect to an object 
instance

•Can “see” both instance and class variables

Andrew H. Fagg: CS 2334: Classes and Objects 36



Parameter Passing

Primitive data types:

•Value gets copied (pass by value)

•Changes made in method don’t affect the 
calling method
•Except when a value is explicitly returned

•A reference is a primitive data type

Andrew H. Fagg: CS 2334: Classes and Objects 37



Parameter Passing

Objects:

•References are passed by value

•But: inside and outside the method, the 
reference refers to the same memory 
location

•So: changes to data by the called method are 
visible to the calling method
•True for both primitive data and objects inside 

the object 

Andrew H. Fagg: CS 2334: Classes and Objects 38



Andrew H. Fagg: CS 2334: Classes and Objects 39



Method Overloading

Overloading: using the same method name, 
but different parameters

•Common when we want to assume default 
parameters

•or when different types convey similar types 
of information

public void addValue(int val);

public void addValue(double val);

Andrew H. Fagg: CS 2334: Classes and Objects 40



“this"

•The “this” keyword is a reference that refers 
to the object on which an instance method 
was called on

•Can also refer to a constructor

Andrew H. Fagg: CS 2334: Classes and Objects 41



“this” Referring to the Called Object

class Person{

private String name;

private int age;

public Person(String name, int age){

this.name = name;

this.age = age;

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 42



“this” as a Constructor
class Person{

private String name;

private int age;

public Person(String name, int age){

this.name = name;

this.age = age;

}

public Person(String name){

this(name, 20);

}

public Person(){

this(“Bob”, 42);

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 43



Classes within Classes

•One of the “big wins” with object-oriented 
programming is that we can define classes 
hierarchically

•Now that we have a “Person”, we can create  
new classes that contain Persons

Andrew H. Fagg: CS 2334: Classes and Objects 44



Classes within Classes
class Course {

private int courseNumber;

private Person instructor;

private ArrayList<Person> teachingAssistants;

private ArrayList<Person> students;

:

:

}

Andrew H. Fagg: CS 2334: Classes and Objects 45



Classes within Classes

Constructor is responsible for initializing 
underlying classes…
class Course {

private int courseNumber;

private Person instructor;

private ArrayList<Person> teachingAssistants;

private ArrayList<Person> students;

public Course(){

teachingAssistants = new ArrayList<Person>();

students = new ArrayList<Person>();

}

}

Andrew H. Fagg: CS 2334: Classes and Objects 46



Classes within Classes
Constructors can use the default constructor to 
handle some initialization
class Course {

:

public Course(){

teachingAssistants = new ArrayList<Person>();

students = new ArrayList<Person>();

}

public Course(int courseNumber, Person instructor) 
{

this();

this.courseNumber = courseNumber;

this.instructor = instructor;

}

:

} Andrew H. Fagg: CS 2334: Classes and Objects 47



Andrew H. Fagg: CS 2334: Classes and Objects 48


