Classes, Objects, and UML



Notes

*Lab 1: grading this week
eLab 2: available soon

eCatme: should have email invitation
* Use for group formation

* Next Week: lab 3 and project 1



Notes

* Advancing to the Data Structures course (CS
2413) requires an A or B in at least one of
1323 and 2334 (and at least a C in both)

*Programming team



Lab 1 Lessons



Lab 1 Lessons

*Should now have the essential tools running:
Java, Eclipse, Web-Cat

*Web-Cat gives important feedback — use it
*Learn to read the documentation

*Learn to read the specification in detail
* Requirements are very precise

*Start early



Andrew H. Fagg: CS 2334: Classes and Objects



Java Objects
Class: a means of creating new types

*Group data elements that describe some
abstract concept

*These data elements can be primitive data or
other objects

*Provide methods that operate on these data
elements

This is an important way to organize your data
—and hence your coding!



Java Objects
An object is one instance of a class

*Occupies a block of memory in the heap that
contains the values of the data elements

*Each instance has its own memory

*The set of values stored in this memory block
is called the state of the object

*In code, we refer to object instances using a
reference to the memory block



Instance Methods

Some specific types of instance methods

* Accessors: Methods used to report the state
of objects

* Mutators: Methods used to change the state
of objects

Syntax: reference.method (parameters)



Examples

*What is the state of a StringBuffer object?

*How can the state of the StringBuffer object
be changed?

(StringBuffer API)



Examples

What is the state for a Date object?



Instance Methods: Special Cases

Some specific types of instance methods

*Getters: Accessor methods used to report the
low-level state of objects

*Setters: Mutator methods used to change the
low-level state of objects



Instance Methods: Special Cases

Mutator methods:

*|f there are no methods that change the state
of an object. These are called immutable
classes (e.g. String, Integer, Float classes)

*There may be many methods that change the
object’s state (e.g. StringBuffer class). We call
these classes mutable



Examples

Find examples of accessors and mutators in
StringBuffer

* And String



A Class is a Contract

The set of instance methods define the legal
ways that an object may be accessed/changed

*All operations on an object: must always
leave the object in a consistent state

* Enforce through variable visibility and through
proper method definition

*Best practice:

* On entry to a method: assume that the object is
In a consistent state

* On exit, ensure that it is still consistent



Examples

What would an inconsistent state be for a
Triangle object?

*Properties: height, base width, area



A Class as an “Encapsulater”

A class hides many details from the outside
world

*The user of a class only has to worry about
the class’ public interface
* Easier to understand how to use the class

* The implementation of the underlying class can
change without the user knowing



Unified Modeling Language (UML)

UML is a spatial representation that describes:
*The definition of a class

How the different classes relate to on-
another



Unified Modeling Language (UML)

Book

-title: String
-author: String
-isbn: String

+Book(myAuthor: String, myTitle: String, myISBN: String)
+getTitle(): String

+getAuthor(): String

+getISBN(): String

Andrew H. Fagg: CS 2334: Review

19




Unified Modeling Language (UML)

Let’s implement this class

Book

-title: String
-author: String
-isbn: String

+Book(myAuthor: String, myTitle: String, myISBN: String)
+getTitle(): String

+getAuthor(): String

+getISBN(): String




UML Class Diagrams

*Name of class at top

* Middle section contains data
* Name: type

*Bottom section contains methods
 Name(param1l: type, param2: type...): return type

*Plus (+) means public
* Minus (-) means private



Unified Modeling Language (UML)

Umlet tool:
http://www.umlet.com/



http://www.umlet.com/changes.htm

Classes & Objects (continued)



Public vs Private Data

Can be a tough decision.
* What are the pros & cons?



Public vs Private Data

*Public Pros:
* Easy access to all data by other classes
* Don’t have to implement getters and setters

e Public Cons:

* Can’t protect the data from other classes — easy
to get into an inconsistent state

* Therefore, the class cannot make any guarantees
about how it behaves



Public vs Private Data

For this class:
*We want our classes to protect themselves

*All instance variables will be declared as
private or protected (more on the latter

soon)

e All external access to instance variables will
be through public methods



Putting it All Together

*TopHat exercise



Instance vs Class Data

*Each object gets its own copy of instance
data

*All objects in a class share one copy of class
data
*In UML, class variables are underlined

* In the class definition, class variables are declared
as static



Example

Suppose we were going to design a post-it
note application

\What is the state of the Note?

*How might the state be changed?
* Let’s make UML for this...



Example

How are we going to store things like the
number of characters that are allowed in a

note?

*Why is instance data not appropriate for
this?



Class Variables

Only one copy of the variables for all instances
in the class
*Declare as static:

private static final int maxCharacters = 100;

private static int numNotes = 0;



Class Methods

*Class-level methods are labeled static in Java

*Invocation (execution):
Class.methodName (parameters)



*Project 1 is live

*Lab 1 grades have been transferred to
Canvas

*Lab 2 grading has started
*Lab 3 is live



Class Methods

Examine Math class on Java API
*How is Math different from String?



Class Methods

*Many class methods have no access to
instance data
* There is no object, so there is no instance data

* Example: examine toString() in Integer class for
both instance and class methods

*But: if a static method in a class has access to
an object reference, it can access the private
instance variables of that object

* My opinion: this is poor language design. Avoid
doing this!



Instance Methods

* Are always called with respect to an object
Instance

*Can “see” both instance and class variables



Parameter Passing

Primitive data types:
*Value gets copied (pass by value)

*Changes made in method don’t affect the

calling method
* Except when a value is explicitly returned

*A reference is a primitive data type



Parameter Passing

Objects:
*References are passed by value

*But: inside and outside the method, the
reference refers to the same memory
location

*So: changes to data by the called method are
visible to the calling method

* True for both primitive data and objects inside
the object



Andrew H. Fagg: CS 2334: Classes and Objects

39



Method Overloading

Overloading: using the same method name,
but different parameters

Common when we want to assume default
parameters

*or when different types convey similar types
of information

public void addValue (int wval);
public void addValue (double wval);



Ilthisll

*The “this” keyword is a reference that refers
to the object on which an instance method
was called on

*Can also refer to a constructor



“this” Referring to the Called Object

class Person{
private String name;

private i1nt age;

public Person (String name, 1nt age) {
this.name = name;

this.age = age;



“this” as a Constructor

class Person{
private String name;
private int age;

public Person (String name, int age) {
this.name = name;
this.age = age;

public Person (String name) {
this (name, 20);

public Person () {
this (“Bob”, 42);



Classes within Classes

*One of the “big wins” with object-oriented
programming is that we can define classes
hierarchically

*Now that we have a “Person”, we can create
new classes that contain Persons



Classes within Classes

class Course {
private int courseNumber;
private Person instructor;
private ArraylList<Person> teachlingAssistants;

private ArraylList<Person> students;



Classes within Classes

Constructor is responsible for initializing
underlying classes...

class Course {
private int courseNumber;
private Person instructor;
private ArraylList<Person> teachingAssistants;

private ArrayList<Person> students;

public Course () {
teachingAssistants = new ArrayList<Person> ()
students = new ArrayList<Person> () ;



Classes within Classes

Constructors can use the default constructor to
handle some initialization

class Course {

public Course () {
teachingAssistants = new ArrayList<Person>();

students = new ArraylList<Person> (),

public Course (int courseNumber, Person instructor)

{
this () ;
this.courseNumber = courseNumber;

this.instructor = instructor;



Andrew H. Fagg: CS 2334: Classes and Objects

48



