Exam 1 Review Topics



Exam technical details

When: Monday, October 4t in class
Bring your student ID
Seats are assighed

Up to two pages of notes allowed

— 8.5x11 paper (double sided is fine). Typed or
handwritten.

No electronic devices

— Including calculators, watches, iwatches, phones,
laptops, tablets, ...

Multiple choice
Can grade as you exit the exam



Objects and Classes/Review of 1323

What is an object?
How do you create one?

What is a constructor and how do you use
one?

What is a method and how do you use it?
What is the state of an object?
Trace through a program’s execution



Object Oriented Design

* Abstraction and Encapsulation
— Abstract away the implementation details

— Users of your classes shouldn’t need to know the
implementation

* Aggregation
— Has-a

e Immutable vs mutable classes



UML

Know how to interpret and compare class
diagrams

* Hierarchies, abstract classes, aggregation

 Listing all variables and methods properly,
including visibility and static/instance



Input/Output

e How to read a line from a BufferedReader?
* How to parse the resulting String?

 How to interpret substrings in terms of ints and
doubles?

e Using System.out.printin()

You should be able to recognize the syntax of
opening a file vs System.in, but you won’t need to
generate the syntax



Inheritance and Polymorphism

What does it mean to inherit from a superclass?
— What methods and variables can you access?

— |Is-a relationship

Overloading versus Overriding

— Overloading has the same name but different
parameters

— Overriding overwrites the superclass method (same
name and parameters)

super keyword

Polymorphism allows you to use super and
subtypes in reference declarations



ArraylList

* Array lists give you non-fixed arrays

* ArrayList<E>: ArraylList of a particular type of
object
 Know how to use, including
— Initialization
— Adding items
— Getting items
— |terating through the items



Exception and Error handling

What is an exception?
Why do you throw one?
Exceptions versus Errors

Exceptions that need to be caught versus not

— RuntimeExceptions versus other Exceptions

Try/catch/finally



Abstract Classes and Interfaces

How does an abstract class differ from a
regular superclass?

Why use abstract classes?
How do they differ from Interfaces?

— Why use an interface?

Comparable vs Comparator



Not on the Exam

* Java Generics and later topics

* | will not ask you to parrot back elements of
the Java API

— But you do need to be able to recognize and
interpret the most common elements (that we
have used)



