Exceptions



Challenges to Building Robust Software

Software will often be used in conditions that
you (the designer) cannot precisely anticipate

* A user might enter data that is incorrect

* A user programmer might create or
manipulate objects in incorrect ways

* Programmatic operations might fail
*System errors might occur

We need to address all of these



Techniques for Highlighting Errors



Techniques for Highlighting Errors

When an error in a method occurs, we can use:

*System.out.printin()

* Create a log file that keeps track of every important
event/operation inside your code (including
errors). Log4l is a tool for doing this...

*Return a value that indicates an error
*System.exit(): halt execution of your program



Techniques for Highlighting Errors

*System.out.printin()

* Create a log file that keeps track of every important
event/operation inside your code (including
errors). Log4l is a tool for doing this...

*Return a value that indicates an error
*System.exit(): halt execution of your program

None of these techniques allows a program to
robustly take corrective action



Exceptions

*You have already seen some exceptions...



Exceptions

*You have already seen some exceptions...
* NullPointerException
* IndexOutOfBoundsException
* |OException

*These cause your program to halt

 Show the file and line number where the failure
occurred

* Show the “stack trace” — the nested list of
method calls that has brought us to the failure



Examples

* Method calls on uninstantiated objects
*Creating arrays of negative size

* Accessing elements of an array that don’t
exist



Syntax

try
{

// some code that could throw an exception

}

catch (ExceptionName e)

{
// Fix the problem here

J

If you’re not going to fix the problem there is no
reason to catch the Exception



Administrivia

*Project 1 is now overdue
*Lab 5 will be released shortly
*Exam 1: 12 days from now

*Project 2 will be released today or tomorrow
*Due in 3 weeks.

* Will talk about some of it today & continue
conversation on Monday



Throwing Exceptions

When an Exception is thrown:
*Execution stops immediately

*JVM examines the call stack for a matching
catch statement

e Execution continues within the body of the
matching catch statement

*Then: execution continues after the try-catch



Throwing Exceptions

*The catch statement should be placed at a
point where the program can address the
issue (we call this handling the exception)

* Exceptions not caught within the method
cause the search to continue in the next
method in the call stack (the one that called
this one)

*Exceptions not caught by any method in the
call stack cause the program to halt



Hierarchy of Exception Classes

Object

*Throwable

* Exception

* RuntimeException
* NullPointerException
* ArithmeticException
* ArraylndexOutOfBoundsException

* |OException
*Error



Error Class

*See API

*When these occur, we generally accept that
we cannot recover

*Instead, we try to gracefully clean things up
before halting
 Save critical data to files
* Alert the user



RuntimeException

Most often caused by programming errors

*Unchecked exception: we don’t have to
explicitly address these in code unless we
want to (so, no “throws” statements
necessary)

e Usually a sign that we need to debug our
code

*Example: ArrayList API (get, set)



Not RuntimeExceptions

* All exceptions that are not
RuntimeExceptions are checked exceptions

* Any method that can throw one of these
exceptions must declare this in the method
prototype (throws NameOfException)

* Any method that calls one of these methods:
* Must address the exception with a try/catch
*or also throw the same exception



Checked Exception Example

public Trial (String directory, String infantID, 1int week)
throws IOException { ..}

public static void main (String[] args) throws IOException

{

Trial trial = new Trial ("data", "k1", 1);



Checked Exception Example: Alternative

public Trial (String directory, String infantID, 1nt week)
throws IOException { ..}

public static void main(String[] args)
{
try {
Trial trial = new Trial ("data", "k1", 1);
} catch (IOException e) {

System.out.println (“Error accessing file.”);



*Finish example ...



Creating Our Own Exceptions

*Only create a new exception if there isn’t
already one that does the job

e Extend an existing class

* Often Exception or RuntimeException
* Which is best?

*Implement the constructors
*Can add our own data!



Example: Prompting the User for an
Array Size



Prompting the User for an Array Size

*Create an lllegalSizeException
*Prompt the user for a size

*If the given value is non-positive, then throw
our new Exception

*When the Exception is received, then keep
prompting for an array size



Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?



Back to: Prompting the User for an
Array Size

What about when the user enters a non-
number?

*\We can also throw an exception under these
conditions



Best Practices

*Don’t overuse Exceptions:

* If your code can detect and address the error
right then and there, don’t throw

* Only use if interrupting the flow of the code is the
right way to address the problem

*Only introduce new Exception classes when
necessary

*|f you are receiving unchecked exceptions,
then address the bug — don’t ask your code
to recover



Multiple Catch Blocks

e Searched in order
* First one to match “wins” and no others are checked

try

{

}

catch (RunTimeException e)

{

}

catch (ArithmeticException e)
{

}



Finally Blocks: Cleaning Up

Guaranteed to execute finally block after the try block:
* Even if an exception occurs within the try
e Even if the try includes a “return”

try

{

}

catch (RunTimeException e)
{

}

finally

{

}



Rethrowing Exceptions

Sometimes your catch can’t address the Exception
* Rethrow original Exception object
*or create a new one to throw...

try

{

}
catch (RunTimeException e)

{

throw e;

or
throw new MyException (“foo”);

J



Nesting Exceptions

When an exception is thrown:
*JVM starts a the top of the call stack
*Finds the try closest to the top of the stack

*|f a catch statement matches, then the
corresponding block is executed and then
execution continues after that try/catch

e|f no match: search the call stack for the next
try



Nesting Exceptions

Search of the call stack continues until:

*The JVM leaves main() — causing a program
halt

e A catch matches



Andrew H. Fagg: CS 2334: Exceptions

33



