Java Generics

Arrays Class

Provides, among other things, static methods
for sorting primitive arrays of different types
(byte, char, int, double)

Arrays Class
Problems with this?

*Separate implementation for each type
*Each new type needs a new implementation

Solutions?

Arrays Class

Solutions?

*Could provide a static method that sorts an
array of Objects

Arrays Class

Could provide a static method that sorts an
array of Objects

*But - what does it mean to compare two
arbitrary Objects so that we can establish an
ordering between them?

* For example a String and an Integer?

*We really need a way of talking generically
about a homogeneous array of Objects

Java Generics

*A type becomes a parameter to a class
and/or a method:

public class ClassName<T>{

*T is the variable type that is assighed when
we use the class

* Within the class definition, we can “pretend”
that it is a real type (parameters, variable
declarations and return types)

GenericStack example ...

Standard Generic Type Names

Generic type symbols are arbitrary, but we
tend to use a few:

*E - Element (used extensively by the Java
Collections Framework)

*K - Key

*N - Number
T - Type

*V —Value

Advantages of Generics

*Code reuse
* ArrayList, Java Collections Framework

*Specific types are checked at compile time
(as opposed to everything having to be an
Object)

* Reduces runtime errors

eEasier to read and understand code when we
can be very explicit about types

Notes

*Primitive types cannot be used as generic
types

* Must use the wrapper classes
*Type erasure: generics are checked at
compile time, not at runtime
* This decision was made to maintain backward
compatibility
* Not a serious issue most of the time

Implications of Type Erasure

*Cannot construct objects of type E
E myData = new E(); // illegal code

e Cannot construct arrays of type E
E[] elements = new E[capacity]l; // illegal

* Solution to the latter: create an array of objects and

then cast to array of E
E[] elements = (E[]) new Object[capacity]l; // Legal

Implications of Type Erasure

einstanceof() cannot distinguish same class
with different generic type, because it is
done at run time
* ArrayList<integer> and ArrayList<String> are the
same type according to instanceof
*Exception classes cannot be generic

Static data cannot be of a generic type

Inheritance and Generics

*In many situations, we might have more than
one generic type as part of a class or method
definition

* These could be arbitrary types or we might
want them to have some specific relationship

* For example: we might want T1 to be a superclass
of T2

Administrivia

*Lab 5 grades: coming
*Project 1 grades: posted

*Exam 1 grades & returned exams: posted and
emailed

*Lab 7 coming soon

Generics

A type becomes a parameter of another type
definition

For example: GenericStack<Person>
*Code reuse
*Standard interfaces
*Type checking at compile time

*Type erasure: generic types are lost at run
time

Object

|

Number

Class Hierarchies

T\

Integer

Double

Andrew H. Fagg: CS 2334: Java Generics

16

Class Hierarchies

Object Integer 1 = new Integer (42);
T Number n = new Integer (1138);
Number

T\

Integer | | Double

Andrew H. Fagg: CS 2334: Java Generics 17

Class Hierarchies

Object

|

Number

T\

Integer | | Double

Andrew H. Fagg: CS 2334: Java Generics

ArrayList<Number>

T 2177

ArraylList<integer>

18

Class Hierarchies

rayList<integer>

Andrew H. Fagg: CS 2334: Java Generics 19

Class Hierarchies

rayList<integer>

ArrayList<Number>

ArraylList<integer>

The only common (specific) ancestor is Object...

Andrew H. Fagg: CS 2334: Java Generics

20

GenericTest example

Wildcards

*We still want a way of saying that we will
accept any type as input to a generic

*Or — we want to put constraints on the type

Wildcards

There is a class hierarchy that we can use...

ArraylList<?>

1

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>

Andrew H. Fagg: CS 2334: Java Generics

24

Wildcards

But, there is a hierarchy that we can use...

“Arraylist of anything”

ArraylList<?>

1

ArrayList<? extends Number>

ArrayList<integer> | |ArrayList<Double> | |ArrayList<Number>

Andrew H. Fagg: CS 2334: Java Generics 25

Wildcards

But, there is a hierarchy that we can use...

ArraylList<?>

1 “ArraylList of
anything that is a

subclass of a
Number”

ArrayList<? extends Number>

ArrayList<integer> | |ArrayList<Double> | |ArrayList<Number>

Andrew H. Fagg: CS 2334: Java Generics 26

Wildcards

ArrayList<Integer> listl = new ArraylList<Integer>();
ArrayList<? extends Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? extends Number>

ArrayList<Integer> | |ArrayList<Double>

ArrayList<Number>

Andrew H. Fagg: CS 2334: Java Generics

27

Example: sum a stack of Numbers

Binary Search
Search for a key in an array and return it’s index

*One possible implementation:

public static int <T>
binarySearch (T[] a, T key, Comparator<T> c)

*The Comparator allows us to compare the key
against the elements of the array

*The generic implementation doesn’t require
knowledge of the specific object types

Binary Search

Could we be more general about what
Comparators are acceptable?

*Suppose T = Double

Binary Search

Could we be more general about what
Comparators are acceptable?

*Suppose T = Double

*Could a Comparator<Number> work?
*Yes! Number allows access to the doubleValue

* public static int compare(Number d1, Number d2)
e |f(d1.doubleValue() < d2.doubleValue()) return -1;

Wildcard Example |

Arrays in Java API (actual implementation):

binarySearch (T[] a, T key, Comparator<? super T> C)

*The class that is passed as the third parameter
must implement the Comparator interface for
type T or a superclass of type T

Wildcards

The complement...

ArraylList<?>

1

ArrayList<? super Number>

ArrayList<Object>

Andrew H. Fagg: CS 2334: Java Generics

ArrayList<Number>

33

Wildcards

The complement...

ArrayList<?>
“ArraylList of

anything that is a

ArrayList<? super Number> superclass of a

Number”

ArrayList<Object> ArrayList<Number>

Wildcards

ArraylList<Object> 1listl = new ArrayList<Object>();
ArrayList<? super Number> list2 = listl; // Legal

ArraylList<?>

ArrayList<? super Number>

ArrayList<Object>

Andrew H. Fagg: CS 2334: Java Generics

ArrayList<Number>

35

Wildcard Example I

Example: Copy from one GenericStack to another

public static<T> void
copy (GenericStack<? super T> dest,

GenericStack<? extends T> src)

*The <T> before the method name determines
the base type

*The source must be a class that is or extends T

*The destination must be a class that is or is a
superclass of T

Wildcards and Generic Types

*Give us a tremendous amount of flexibility

*Wildcard types are defined and checked at
compile time
* Reduce runtime errors!

eLab 7: we will define:
* Generic notion of a Card<T>
* Generic notion of a Deck<T, E extends Card<T>>

