
Java Generics

Andrew H. Fagg: CS 2334: Java Generics 1

Arrays Class

Provides, among other things, static methods
for sorting primitive arrays of different types
(byte, char, int, double)

Andrew H. Fagg: CS 2334: Java Generics 2

Arrays Class

Problems with this?

•Separate implementation for each type

•Each new type needs a new implementation

Solutions?

Andrew H. Fagg: CS 2334: Java Generics 3

Arrays Class

Solutions?

•Could provide a static method that sorts an
array of Objects

Andrew H. Fagg: CS 2334: Java Generics 4

Arrays Class

Could provide a static method that sorts an
array of Objects

•But - what does it mean to compare two
arbitrary Objects so that we can establish an
ordering between them?
•For example a String and an Integer?

•We really need a way of talking generically
about a homogeneous array of Objects

Andrew H. Fagg: CS 2334: Java Generics 5

Java Generics
•A type becomes a parameter to a class
and/or a method:
public class ClassName<T>{

:

}

•T is the variable type that is assigned when
we use the class

•Within the class definition, we can “pretend”
that it is a real type (parameters, variable
declarations and return types)

Andrew H. Fagg: CS 2334: Java Generics 6

GenericStack example …

Andrew H. Fagg: CS 2334: Java Generics 7

Standard Generic Type Names

Generic type symbols are arbitrary, but we
tend to use a few:

•E - Element (used extensively by the Java
Collections Framework)

•K - Key

•N - Number

•T - Type

•V – Value

Andrew H. Fagg: CS 2334: Java Generics 8

Advantages of Generics

•Code reuse
•ArrayList, Java Collections Framework

•Specific types are checked at compile time
(as opposed to everything having to be an
Object)
•Reduces runtime errors

•Easier to read and understand code when we
can be very explicit about types

Andrew H. Fagg: CS 2334: Java Generics 9

Notes

•Primitive types cannot be used as generic
types
•Must use the wrapper classes

•Type erasure: generics are checked at
compile time, not at runtime
•This decision was made to maintain backward

compatibility
•Not a serious issue most of the time

Andrew H. Fagg: CS 2334: Java Generics 10

Implications of Type Erasure

•Cannot construct objects of type E
E myData = new E(); // illegal code

•Cannot construct arrays of type E
E[] elements = new E[capacity]; // illegal

•Solution to the latter: create an array of objects and
then cast to array of E

E[] elements = (E[]) new Object[capacity]; // Legal

Andrew H. Fagg: CS 2334: Java Generics 11

Implications of Type Erasure

• instanceof() cannot distinguish same class
with different generic type, because it is
done at run time
•ArrayList<Integer> and ArrayList<String> are the

same type according to instanceof

•Exception classes cannot be generic

•Static data cannot be of a generic type

Andrew H. Fagg: CS 2334: Java Generics 12

Inheritance and Generics

•In many situations, we might have more than
one generic type as part of a class or method
definition

• These could be arbitrary types or we might
want them to have some specific relationship
•For example: we might want T1 to be a superclass

of T2

Andrew H. Fagg: CS 2334: Java Generics 13

Administrivia

•Lab 5 grades: coming

•Project 1 grades: posted

•Exam 1 grades & returned exams: posted and
emailed

•Lab 7 coming soon

Andrew H. Fagg: CS 2334: Java Generics 14

Generics

A type becomes a parameter of another type
definition

For example: GenericStack<Person>

•Code reuse

•Standard interfaces

•Type checking at compile time

•Type erasure: generic types are lost at run
time

Andrew H. Fagg: CS 2334: Java Generics 15

Class Hierarchies

Andrew H. Fagg: CS 2334: Java Generics 16

Number

Integer

Object

Double

Class Hierarchies

Integer i = new Integer(42);

Number n = new Integer(1138);

Andrew H. Fagg: CS 2334: Java Generics 17

Number

Integer

Object

Double

Class Hierarchies

Andrew H. Fagg: CS 2334: Java Generics 18

Number

Integer

Object

Double

ArrayList<Number>

ArrayList<Integer>

???

Class Hierarchies

Andrew H. Fagg: CS 2334: Java Generics 19

ArrayList<Number>

ArrayList<Integer>

???

Class Hierarchies

The only common (specific) ancestor is Object…

Andrew H. Fagg: CS 2334: Java Generics 20

Object

ArrayList<Number>

ArrayList<Integer>

???

ArrayList<Number> ArrayList<Integer>

GenericTest example

Andrew H. Fagg: CS 2334: Java Generics 21

Wildcards

•We still want a way of saying that we will
accept any type as input to a generic

•Or – we want to put constraints on the type

Andrew H. Fagg: CS 2334: Java Generics 23

Wildcards

There is a class hierarchy that we can use…

Andrew H. Fagg: CS 2334: Java Generics 24

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

Wildcards

But, there is a hierarchy that we can use…

Andrew H. Fagg: CS 2334: Java Generics 25

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

“ArrayList of anything”

Wildcards

But, there is a hierarchy that we can use…

Andrew H. Fagg: CS 2334: Java Generics 26

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

“ArrayList of
anything that is a

subclass of a
Number”

Wildcards

Andrew H. Fagg: CS 2334: Java Generics 27

ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

ArrayList<Integer> list1 = new ArrayList<Integer>();

ArrayList<? extends Number> list2 = list1; // Legal

Example: sum a stack of Numbers

Andrew H. Fagg: CS 2334: Java Generics 28

Binary Search

Search for a key in an array and return it’s index

•One possible implementation:
public static int <T>

binarySearch(T[] a, T key, Comparator<T> c)

•The Comparator allows us to compare the key
against the elements of the array
•The generic implementation doesn’t require
knowledge of the specific object types

Andrew H. Fagg: CS 2334: Java Generics 29

Binary Search

Could we be more general about what
Comparators are acceptable?

•Suppose T = Double

Andrew H. Fagg: CS 2334: Java Generics 30

Binary Search

Could we be more general about what
Comparators are acceptable?

•Suppose T = Double

•Could a Comparator<Number> work?
•Yes! Number allows access to the doubleValue

•public static int compare(Number d1, Number d2)
• If(d1.doubleValue() < d2.doubleValue()) return -1;
•…

Andrew H. Fagg: CS 2334: Java Generics 31

Wildcard Example I

Arrays in Java API (actual implementation):
binarySearch(T[] a, T key, Comparator<? super T> c)

•The class that is passed as the third parameter
must implement the Comparator interface for
type T or a superclass of type T

Andrew H. Fagg: CS 2334: Java Generics 32

Wildcards

The complement…

Andrew H. Fagg: CS 2334: Java Generics 33

ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

Wildcards

The complement…

Andrew H. Fagg: CS 2334: Java Generics 34

ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

“ArrayList of
anything that is a

superclass of a
Number”

Wildcards

Andrew H. Fagg: CS 2334: Java Generics 35

ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

ArrayList<Object> list1 = new ArrayList<Object>();

ArrayList<? super Number> list2 = list1; // Legal

Wildcard Example II

Example: Copy from one GenericStack to another
public static<T> void

copy (GenericStack<? super T> dest,

GenericStack<? extends T> src)

•The <T> before the method name determines
the base type

•The source must be a class that is or extends T

•The destination must be a class that is or is a
superclass of T

Andrew H. Fagg: CS 2334: Java Generics 37

Wildcards and Generic Types

•Give us a tremendous amount of flexibility

•Wildcard types are defined and checked at
compile time
•Reduce runtime errors!

•Lab 7: we will define:
•Generic notion of a Card<T>
•Generic notion of a Deck<T, E extends Card<T>>

Andrew H. Fagg: CS 2334: Java Generics 39

