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Arrays Class

Provides, among other things, static methods 
for sorting primitive arrays of different types 
(byte, char, int, double)
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Arrays Class

Problems with this?

•Separate implementation for each type

•Each new type needs a new implementation

Solutions?
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Arrays Class

Solutions?

•Could provide a static method that sorts an 
array of Objects
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Arrays Class

Could provide a static method that sorts an 
array of Objects

•But - what does it mean to compare two 
arbitrary Objects so that we can establish an 
ordering between them?
•For example a String and an Integer?

•We really need a way of talking generically 
about a homogeneous array of Objects
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Java Generics
•A type becomes a parameter to a class 
and/or a method:
public class ClassName<T>{

:

}

•T is the variable type that is assigned when 
we use the class

•Within the class definition, we can “pretend” 
that it is a real type (parameters, variable 
declarations and return types)
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GenericStack example …
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Standard Generic Type Names

Generic type symbols are arbitrary, but we 
tend to use a few:

•E - Element (used extensively by the Java 
Collections Framework)

•K - Key

•N - Number

•T - Type

•V – Value
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Advantages of Generics

•Code reuse
•ArrayList, Java Collections Framework

•Specific types are checked at compile time 
(as opposed to everything having to be an 
Object)
•Reduces runtime errors

•Easier to read and understand code when we 
can be very explicit about types
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Notes

•Primitive types cannot be used as generic 
types
•Must use the wrapper classes

•Type erasure: generics are checked at 
compile time, not at runtime
•This decision was made to maintain backward 

compatibility
•Not a serious issue most of the time

Andrew H. Fagg: CS 2334: Java Generics 10



Implications of Type Erasure

•Cannot construct objects of type E
E myData = new E();  // illegal code

•Cannot construct arrays of type E
E[] elements = new E[capacity]; // illegal

•Solution to the latter: create an array of objects and 
then cast to array of E

E[] elements = (E[]) new Object[capacity]; // Legal
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Implications of Type Erasure

• instanceof() cannot distinguish same class 
with different generic type, because it is 
done at run time
•ArrayList<Integer> and ArrayList<String> are the 

same type according to instanceof

•Exception classes cannot be generic

•Static data cannot be of a generic type
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Inheritance and Generics

•In many situations, we might have more than 
one generic type as part of a class or method 
definition

• These could be arbitrary types or we might 
want them to have some specific relationship
•For example: we might want T1 to be a superclass 

of T2
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Administrivia

•Lab 5 grades: coming

•Project 1 grades: posted

•Exam 1 grades & returned exams: posted and 
emailed

•Lab 7 coming soon
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Generics

A type becomes a parameter of another type 
definition

For example: GenericStack<Person>

•Code reuse

•Standard interfaces

•Type checking at compile time

•Type erasure: generic types are lost at run 
time
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Class Hierarchies
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Class Hierarchies

Integer i = new Integer(42);

Number n = new Integer(1138);
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Class Hierarchies
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Class Hierarchies
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Class Hierarchies

The only common (specific) ancestor is Object…

Andrew H. Fagg: CS 2334: Java Generics 20

Object

ArrayList<Number>

ArrayList<Integer>

???

ArrayList<Number> ArrayList<Integer>



GenericTest example
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Wildcards

•We still want a way of saying that we will 
accept any type as input to a generic

•Or – we want to put constraints on the type
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Wildcards

There is a class hierarchy that we can use…
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Wildcards

But, there is a hierarchy that we can use…
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ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

“ArrayList of anything”



Wildcards

But, there is a hierarchy that we can use…
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ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

“ArrayList of 
anything that is a 

subclass of a 
Number”



Wildcards
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ArrayList<? extends Number>

ArrayList<Integer>

ArrayList<?>

ArrayList<Double> ArrayList<Number>

ArrayList<Integer> list1 = new ArrayList<Integer>();

ArrayList<? extends Number> list2 = list1;   // Legal



Example: sum a stack of Numbers
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Binary Search

Search for a key in an array and return it’s index

•One possible implementation:
public static int <T> 

binarySearch(T[] a, T key, Comparator<T> c)

•The Comparator allows us to compare the key 
against the elements of the array
•The generic implementation doesn’t require 
knowledge of the specific object types

Andrew H. Fagg: CS 2334: Java Generics 29



Binary Search

Could we be more general about what 
Comparators are acceptable?

•Suppose T = Double
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Binary Search

Could we be more general about what 
Comparators are acceptable?

•Suppose T = Double

•Could a Comparator<Number> work?
•Yes! Number allows access to the doubleValue

•public static int compare(Number d1, Number d2)
• If(d1.doubleValue() < d2.doubleValue()) return -1;
•…
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Wildcard Example I

Arrays in Java API (actual implementation):
binarySearch(T[] a, T key, Comparator<? super T> c)

•The class that is passed as the third parameter 
must implement the Comparator interface for 
type T or a superclass of type T
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Wildcards

The complement… 
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Wildcards

The complement… 
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ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

“ArrayList of 
anything that is a 

superclass of a 
Number”



Wildcards
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ArrayList<? super Number>

ArrayList<Object>

ArrayList<?>

ArrayList<Number>

ArrayList<Object> list1 = new ArrayList<Object>();

ArrayList<? super Number> list2 = list1;   // Legal



Wildcard Example II

Example: Copy from one GenericStack to another
public static<T> void 

copy (GenericStack<? super T> dest, 

GenericStack<? extends T> src)

•The <T> before the method name determines 
the base type

•The source must be a class that is or extends T

•The destination must be a class that is or is a 
superclass of T
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Wildcards and Generic Types

•Give us a tremendous amount of flexibility

•Wildcard types are defined and checked at 
compile time
•Reduce runtime errors!

•Lab 7: we will define:
•Generic notion of a Card<T>
•Generic notion of a Deck<T, E extends Card<T>>
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