
Inheritance and
Polymorphism

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 1

Notes

•Lab 4:
•Career fair overlaps sessions 2 (012) and 3 (013),

so they will be short handed
•Anyone may attend any lab session this week
•Universal lab deadline: 7pm on Saturday (this

week only)

•Project 1 is due in a little more than a week

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 2

Relationships Between Classes

So far: we have looked at class aggregation

•Class A has-a instance of class B

•This allows A to make use of what has
already been done in class B

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 3

Sharing Data Between Classes

Aggregation (Has-A) is one way to share data
between classes

•Can only use public parts of the class

•Is this a limitation or an advantage?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 4

Sharing Data Between Classes

Another way to share data is inheritance

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 5

Sharing Data Between Classes

Another way to share data is inheritance

•New class keyword: extends
•Defines the inheritance relationship
•UML: Arrow with open head

•Class A extends class B:
• Inherits everything from class B AND allows us to

add to it

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 6

Sharing Data Between Classes

Another way to share data is inheritance

•New method/data visibility keyword:
protected
•This data item/method is visible both inside the

class and to classes that extend this class
•Also visible to other classes in the same package
•# in UML (as opposed to + or -)

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 7

Example: Online Ordering for Amazon

Consider the following product types and
create a hierarchy:

•Product

•Downloadable software

•Software with media

•Book

What is the UML?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 8

Where Do These Properties Belong in
the Hierarchy?

•Price

•URL for downloading software

•Name of item

•Author

•ISBN

•Delivery method

•Shipping costs

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 9

Terminology

•Subclass can be called:
•Child class

•Superclass can also be called:
•Parent class
•Base class

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 10

Terminology

•Subclasses get direct access to all of the
public and protected data and methods from
superclass
•May have to implement methods again if we

need more specific behavior

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 11

Consider equals()

Have you noticed that equals() works in a
class, even if you didn’t put it there?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 12

Consider equals()

How does the program find an equals method
in the Equalizer class?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 13

Consider equals()

How does the program find an equals method
in the Equalizer class?

•It is defined in the Object class:

public boolean equals(Object o)

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 14

Consider equals()

Exercise:

•Demonstrate that this method is not working
properly
•Why?

•Fix it and demonstrate it

•Draw UML of Equalizer, both before and after

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 15

How about toString()

•What does toString() do? Or hashCode()?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 16

Modeling Relationships

•The relationship represented by aggregation
(with the diamond in UML) is “has-a”

•The relationship represented by inheritance
(with the open headed arrow in UML) is “is-a”
•More specialized classes are lower in the

hierarchy

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 17

Modeling Relationships

Exercises:

•Example: Shape, Circle, Square, Ellipse,
Rectangle, Quadrilateral

•Example: Student, Name, Address, City, State,
Country, First Name, Last Name, Middle
Name

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 18

Inheritance Can be Bad if Done
Incorrectly

•Inheritance is widely used in Java
•And all OOP languages

•Works fabulously in GUI components, and
collections

•Inheritance breaks encapsulation if we use
the protected keyword

•Aggregation/composition do not break
encapsulation

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 19

Private or Protected Data?

Choosing private or protected can be a tough
call

•If everything is private:
• Inheritance doesn’t provide the subclass itself

with anything it can’t get through composition
•However: the “user” of a class does get to see a

consistent interface between the super and child
classes

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 20

Private or Protected Data?

Choosing private or protected can be a tough
call

•If everything is protected
•Classes become closely coupled

• Changes in one are likely to causes changes in the
other

•Bad for maintenance ($$$)

•These effects can be mitigated somewhat
through the use of multiple packages

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 21

Private or Protected Data?

Choosing private or protected can be a tough
call

•My take: stick with private

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 22

Administrivia

•Lab 4

•Project 1

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 23

Specification to Implementation

•There is a direct translation from UML to the
skeleton of the class
•Class/instance variables
•Method prototypes

•Then, look to our specification document and
any method-level documentation that we
provide for a discussion about what the
methods do

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 24

Specification to Implementation

•For the projects, and even the labs: get used
to shifting your focus between different
levels of the problem

•In general, when you are working on one
class, you have to put the rest of the
implementation out of your head
•Worry about what this class is supposed to

provide as an interface and how this should be
implemented

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 25

A/B example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 26

Implementing Inheritance: Instance
Methods and Variables

•super.methodName() to explicitly call public
or protected methods in the superclass
•For a given class, remember that there is exactly

one superclass because Java does not allow
multiple inheritance

•super.instanceVariableName to refer to
public or protected instance variables from
the superclass

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 27

Implementing Inheritance:
Constructor

•Constructors are not inherited

•But: can use super() to call the superclass
constructor
• If used, it must be first statement in subclass

constructors
•Can call any of the constructors associated with

the superclass

•Most constructors call other constructors…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 28

Compiler

If you don’t use super(), compiler adds
implicitly for you

•Why?

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 29

Inheritance example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 30

Polymorphism

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple();

This is called “Upcasting”

// We get Apple.computePrice()

// from this call.

pr.computePrice();

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 31

Polymorphism: Methods

•Calling methods: Java Virtual Machine will select
method based on object type at run time (not the
type of the reference)
• Search order: constructed class if available, then parent,

then grandparent, etc.

Produce pr = new Apple();

pr.toString(); // Calls Apple.toString()

•Exercise: show example with Produce hierarchy

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 32

Polymorphism: Variables

•References to instance/class variables are
decided at compile time

•When an instance/class variable is accessed,
the compiler starts looking for the variable
starting with the class of the reference type
• If not found, then the parent class is checked
• If not found, then the grandparent class is

checked…

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 33

A/B example revisit

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 34

Administriva

•Project 1 due Wednesday
•Code reviews: get them done as early as possible

•Lab 5 coming soon
•Those who attend lecture will be given priority

during Friday office hours

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 35

Overriding Methods

When a subclass implements a method that is
identical to one in the superclass, it overrides
the superclass method
•Superclass method must be public or
protected
•Same name
•Same parameters
•Return values: new method must return a
subclass of the original method’s return type
•Static methods cannot be overridden

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 36

A/B example

•Dynamic binding

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 37

Inheritance Example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 38

Recall: Upcasting

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple();

This is called “Upcasting”

// We get Apple.computePrice()

// from this call.

pr.computePrice();

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 39

Upcasting

Upcasting works by default because every
Apple is guaranteed to do everything that a
Produce object does

•This is true for any inheritance relationship:
the child class is guaranteed to do everything
that the parent class provides

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 40

Down-Casting
The other way can be made to work, but we
need to be explicit:
Apple a = pr; // Compiler disallows

Apple a = (Apple) pr; // Allowed

•Forces java to treat the object as if it is the
subclass
• Lets you access subclass methods
• If you improperly cast an object, you will receive

Exceptions when you try to access the object

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 41

Casting and instanceof

instanceof will tell you whether an instance is
a member of a class:

if (pr instanceof Apple) {

Apple a = (Apple) pr;

// Use a….

}

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 42

ArrayList example

Exercise: make an ArrayList of Produce and
Fruit
•What can go in each?
•Printing out the lists

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 43

Immutable Classes and Inheritance

•It is possible to make a class so that it cannot
be extended
public final class ClassName

•This must be done with all immutable classes
•Why?

•Again, if unsure, make class final
•Can always remove it later
•Once you let people extend a class, you can’t

make changes or risk breaking their code

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism 44

