Inheritance and
Polymorphism



Notes

eLab 4:

* Career fair overlaps sessions 2 (012) and 3 (013),
so they will be short handed

* Anyone may attend any lab session this week

e Universal lab deadline: 7pm on Saturday (this
week only)

*Project 1 is due in a little more than a week



Relationships Between Classes

So far: we have looked at class aggregation
*Class A has-a instance of class B

*This allows A to make use of what has
already been done in class B




Sharing Data Between Classes

Aggregation (Has-A) is one way to share data
between classes

*Can only use public parts of the class
*|s this a limitation or an advantage?



Sharing Data Between Classes

Another way to share data is inheritance



Sharing Data Between Classes

Another way to share data is inheritance

*New class keyword: extends

* Defines the inheritance relationship
* UML: Arrow with open head >

*Class A extends class B:

* Inherits everything from class B AND allows us to
add to it



Sharing Data Between Classes

Another way to share data is inheritance

*New method/data visibility keyword:
protected

* This data item/method is visible both inside the
class and to classes that extend this class

* Also visible to other classes in the same package
*# in UML (as opposed to + or -)



Example: Online Ordering for Amazon

Consider the following product types and
create a hierarchy:

*Product
*Downloadable software
*Software with media
*Book

What is the UML?



Where Do These Properties Belong in
the Hierarchy?

*Price

* URL for downloading software
*Name of item

* Author

*|SBN

*Delivery method

*Shipping costs



Terminology

eSubclass can be called:
e Child class

*Superclass can also be called:
* Parent class
* Base class



Terminology

*Subclasses get direct access to all of the
public and protected data and methods from
superclass

* May have to implement methods again if we
need more specific behavior



Consider equals()

Have you noticed that equals() works in a
class, even if you didn’t put it there?

public class Equalizer

{

private int data;

public Equalizer(int data)
{

¥

this.data = data;
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Consider equals()

How does the program find an equals method
in the Equalizer class?



Consider equals()

How does the program find an equals method
in the Equalizer class?

|t is defined in the Object class:
public boolean equals(Object o)



Consider equals()

Exercise:
e Demonstrate that this method is not working

properly
* Why?

*Fix it and demonstrate it
*Draw UML of Equalizer, both before and after



How about toString()

*What does toString() do? Or hashCode()?



Modeling Relationships

*The relationship represented by aggregation
(with the diamond in UML) is “has-a”

*The relationship represented by inheritance
(with the open headed arrow in UML) is “is-a”

* More specialized classes are lower in the
hierarchy



Modeling Relationships

Exercises:

*Example: Shape, Circle, Square, Ellipse,
Rectangle, Quadrilateral
Example: Student, Name, Address, City, State,

Country, First Name, Last Name, Middle
Name



Inheritance Can be Bad if Done
Incorrectly

*Inheritance is widely used in Java
* And all OOP languages

* Works fabulously in GUI components, and
collections

*Inheritance breaks encapsulation if we use
the protected keyword

* Aggregation/composition do not break
encapsulation



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is private:
* Inheritance doesn’t provide the subclass itself
with anything it can’t get through composition

* However: the “user” of a class does get to see a
consistent interface between the super and child
classes



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is protected

* Classes become closely coupled

* Changes in one are likely to causes changes in the
other

* Bad for maintenance (SSS)

* These effects can be mitigated somewhat
through the use of multiple packages



Private or Protected Data”

Choosing private or protected can be a tough
call

* My take: stick with private



Administrivia

°lab 4
*Project 1



Specification to Implementation

*There is a direct translation from UML to the
skeleton of the class
* Class/instance variables
* Method prototypes

*Then, look to our specification document and
any method-level documentation that we
provide for a discussion about what the
methods do



Specification to Implementation

*For the projects, and even the labs: get used
to shifting your focus between different
levels of the problem

*In general, when you are working on one
class, you have to put the rest of the
implementation out of your head

* Worry about what this class is supposed to
provide as an interface and how this should be
implemented



A/B example
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Implementing Inheritance: Instance
Methods and Variables

*super.methodName() to explicitly call public
or protected methods in the superclass

* For a given class, remember that there is exactly
one superclass because Java does not allow
multiple inheritance

esuper.instanceVariableName to refer to
public or protected instance variables from
the superclass



Implementing Inheritance:
Constructor

e Constructors are not inherited

*But: can use super() to call the superclass
constructor

* |If used, it must be first statement in subclass
constructors

* Can call any of the constructors associated with
the superclass

* Most constructors call other constructors...



Compiler

If you don’t use super(), compiler adds
implicitly for you

*Why?



Inheritance example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple
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Polymorphism

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”
// We get Apple.computePrice ()

// from this call.
pr.computePrice () ;



Polymorphism: Methods

* Calling methods: Java Virtual Machine will select
method based on object type at run time (not the
type of the reference)

* Search order: constructed class if available, then parent,
then grandparent, etc.

Produce pr = new Applel()
pr.toString () ; // Calls Apple.toString/()

*Exercise: show example with Produce hierarchy



Polymorphism: Variables

* References to instance/class variables are
decided at compile time

*When an instance/class variable is accessed,
the compiler starts looking for the variable
starting with the class of the reference type

* If not found, then the parent class is checked

* If not found, then the grandparent class is
checked...




A/B example revisit



Administriva

*Project 1 due Wednesday
* Code reviews: get them done as early as possible

*Lab 5 coming soon

* Those who attend lecture will be given priority
during Friday office hours



Overriding Methods

When a subclass implements a method that is
identical to one in the superclass, it overrides
the superclass method

*Superclass method must be public or
protected

*Same name
*Same parameters

*Return values: new method must return a
subclass of the original method’s return type

eStatic methods cannot be overridden



A/B example
*Dynamic binding



Inheritance Example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple
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Recall: Upcasting

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”
// We get Apple.computePrice ()

// from this call.
pr.computePrice () ;



Upcasting

Upcasting works by default because every
Apple is guaranteed to do everything that a
Produce object does

*This is true for any inheritance relationship:
the child class is guaranteed to do everything
that the parent class provides



Down-Casting
The other way can be made to work, but we
need to be explicit:
Apple a = pr; // Compiler disallows

Apple a = (Apple) pr; // Allowed

* Forces java to treat the object as if it is the
subclass

* Lets you access subclass methods

* If you improperly cast an object, you will receive
Exceptions when you try to access the object



Casting and instanceof

instanceof will tell you whether an instance is
a member of a class:

1f (pr 1nstanceof Apple) {
Apple a = (Apple) pr;
// Use a...



ArrayList example

Exercise: make an ArrayList of Produce and
Fruit

* What can go in each?

* Printing out the lists



Immutable Classes and Inheritance

|t is possible to make a class so that it cannot
be extended
public final class ClassName

*This must be done with all immutable classes
* Why?
* Again, if unsure, make class final

e Can always remove it later

*Once you let people extend a class, you can’t
make changes or risk breaking their code



