Inheritance and
Polymorphism



Notes

eLab 4:

* Career fair overlaps sessions 2 (012) and 3 (013),
so they will be short handed

* Anyone may attend any lab session this week

e Universal lab deadline: 7pm on Saturday (this
week only)

*Project 1 is due in a little more than a week



Relationships Between Classes

So far: we have looked at class aggregation
*Class A has-a instance of class B

*This allows A to make use of what has
already been done in class B




Sharing Data Between Classes

Aggregation (Has-A) is one way to share data
between classes

*Can only use public parts of the class
*|s this a limitation or an advantage?



Sharing Data Between Classes

Another way to share data is inheritance



Sharing Data Between Classes

Another way to share data is inheritance

*New class keyword: extends

* Defines the inheritance relationship
* UML: Arrow with open head >

*Class A extends class B:

* Inherits everything from class B AND allows us to
add to it



Sharing Data Between Classes

Another way to share data is inheritance

*New method/data visibility keyword:
protected

* This data item/method is visible both inside the
class and to classes that extend this class

* Also visible to other classes in the same package
*# in UML (as opposed to + or -)



Example: Online Ordering for Amazon

Consider the following product types and
create a hierarchy:

*Product
*Downloadable software
*Software with media
*Book

What is the UML?



Where Do These Properties Belong in
the Hierarchy?

*Price

* URL for downloading software
*Name of item

* Author

*|SBN

*Delivery method

*Shipping costs



Terminology

eSubclass can be called:
e Child class

*Superclass can also be called:
* Parent class
* Base class



Terminology

*Subclasses get direct access to all of the
public and protected data and methods from
superclass

* May have to implement methods again if we
need more specific behavior



Consider equals()

Have you noticed that equals() works in a
class, even if you didn’t put it there?

public class Equalizer

{

private int data;

public Equalizer(int data)
{

¥

this.data = data;

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

12



Consider equals()

How does the program find an equals method
in the Equalizer class?



Consider equals()

How does the program find an equals method
in the Equalizer class?

|t is defined in the Object class:
public boolean equals(Object o)



Consider equals()

Exercise:
e Demonstrate that this method is not working

properly
* Why?

*Fix it and demonstrate it
*Draw UML of Equalizer, both before and after



How about toString()

*What does toString() do? Or hashCode()?



Modeling Relationships

*The relationship represented by aggregation
(with the diamond in UML) is “has-a”

*The relationship represented by inheritance
(with the open headed arrow in UML) is “is-a”

* More specialized classes are lower in the
hierarchy



Modeling Relationships

Exercises:

*Example: Shape, Circle, Square, Ellipse,
Rectangle, Quadrilateral
Example: Student, Name, Address, City, State,

Country, First Name, Last Name, Middle
Name



Inheritance Can be Bad if Done
Incorrectly

*Inheritance is widely used in Java
* And all OOP languages

* Works fabulously in GUI components, and
collections

*Inheritance breaks encapsulation if we use
the protected keyword

* Aggregation/composition do not break
encapsulation



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is private:
* Inheritance doesn’t provide the subclass itself
with anything it can’t get through composition

* However: the “user” of a class does get to see a
consistent interface between the super and child
classes



Private or Protected Data”

Choosing private or protected can be a tough
call

*|f everything is protected

* Classes become closely coupled

* Changes in one are likely to causes changes in the
other

* Bad for maintenance (SSS)

* These effects can be mitigated somewhat
through the use of multiple packages



Private or Protected Data”

Choosing private or protected can be a tough
call

* My take: stick with private



Administrivia

°lab 4
*Project 1



Specification to Implementation

*There is a direct translation from UML to the
skeleton of the class
* Class/instance variables
* Method prototypes

*Then, look to our specification document and
any method-level documentation that we
provide for a discussion about what the
methods do



Specification to Implementation

*For the projects, and even the labs: get used
to shifting your focus between different
levels of the problem

*In general, when you are working on one
class, you have to put the rest of the
implementation out of your head

* Worry about what this class is supposed to
provide as an interface and how this should be
implemented



A/B example

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

26



Implementing Inheritance: Instance
Methods and Variables

*super.methodName() to explicitly call public
or protected methods in the superclass

* For a given class, remember that there is exactly
one superclass because Java does not allow
multiple inheritance

esuper.instanceVariableName to refer to
public or protected instance variables from
the superclass



Implementing Inheritance:
Constructor

e Constructors are not inherited

*But: can use super() to call the superclass
constructor

* |If used, it must be first statement in subclass
constructors

* Can call any of the constructors associated with
the superclass

* Most constructors call other constructors...



Compiler

If you don’t use super(), compiler adds
implicitly for you

*Why?



Inheritance example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

30



Polymorphism

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”
// We get Apple.computePrice ()

// from this call.
pr.computePrice () ;



Polymorphism: Methods

* Calling methods: Java Virtual Machine will select
method based on object type at run time (not the
type of the reference)

* Search order: constructed class if available, then parent,
then grandparent, etc.

Produce pr = new Applel()
pr.toString () ; // Calls Apple.toString/()

*Exercise: show example with Produce hierarchy



Polymorphism: Variables

* References to instance/class variables are
decided at compile time

*When an instance/class variable is accessed,
the compiler starts looking for the variable
starting with the class of the reference type

* If not found, then the parent class is checked

* If not found, then the grandparent class is
checked...




A/B example revisit



Administriva

*Project 1 due Wednesday
* Code reviews: get them done as early as possible

*Lab 5 coming soon

* Those who attend lecture will be given priority
during Friday office hours



Overriding Methods

When a subclass implements a method that is
identical to one in the superclass, it overrides
the superclass method

*Superclass method must be public or
protected

*Same name
*Same parameters

*Return values: new method must return a
subclass of the original method’s return type

eStatic methods cannot be overridden



A/B example
*Dynamic binding



Inheritance Example

Produce
#price: double
computePrice(): double

N

Vegetables Fruit
#pricePerPound: double #pricePerltem: double
computePrice(): double computePrice(): double

I I

Peas Apple

Andrew H. Fagg: CS 2334: Inheritance and Polymorphism

38



Recall: Upcasting

A variable of a super type can really be an
instantiation of the sub type
Produce pr = new Apple()

This is called “Upcasting”
// We get Apple.computePrice ()

// from this call.
pr.computePrice () ;



Upcasting

Upcasting works by default because every
Apple is guaranteed to do everything that a
Produce object does

*This is true for any inheritance relationship:
the child class is guaranteed to do everything
that the parent class provides



Down-Casting
The other way can be made to work, but we
need to be explicit:
Apple a = pr; // Compiler disallows

Apple a = (Apple) pr; // Allowed

* Forces java to treat the object as if it is the
subclass

* Lets you access subclass methods

* If you improperly cast an object, you will receive
Exceptions when you try to access the object



Casting and instanceof

instanceof will tell you whether an instance is
a member of a class:

1f (pr 1nstanceof Apple) {
Apple a = (Apple) pr;
// Use a...



ArrayList example

Exercise: make an ArrayList of Produce and
Fruit

* What can go in each?

* Printing out the lists



Immutable Classes and Inheritance

|t is possible to make a class so that it cannot
be extended
public final class ClassName

*This must be done with all immutable classes
* Why?
* Again, if unsure, make class final

e Can always remove it later

*Once you let people extend a class, you can’t
make changes or risk breaking their code



