Java Collections Framework (JCF):
Lists, Stacks, Queues, Priority
Queues, Sets, and Maps

Administrivia

*Lab 5 graded
*Lab 6 grades coming soon

*Project 2 due on Wednesday
* Testing
* Exceptions
* Code review slots open

eLab 8 released soon
*Project 3 coming this week
*Exam 1

Data Structures vs Abstract Data Types

*Data Structure:

* A specific way of organizing data and operations
to access/use the data

* Structure of the data tied directly to the
implementation

* Abstract data type: An implementation
independent group of data and a set of
operations on this data

Data Structures We Know

*Both arrays and ArrayLlist are data structures
* Implementation dependent

*What are the similarities between ArrayList
and arrays?
* Organization of data?
* Operations?
*What are the differences between these?

* Organization of data?
* Operations?

Class Hierarchy for ArrayList

* Which are
abstract data
types?

* \Which are
data
structures?

java.util

Object

|

Abstractlist -~

oy
&
&
~
&
&

ArrayList

AbstractCollection _ -

-
-
-

=
—
——
—

winterfaces
- lterable
PR
-~ ra
&
i
.-Ir .
_ winterfacen
_ =B Collection

]

ginterfaces
List

Collection Interface

What is a collection?

Collection Interface

What is a collection?
*“Bag” (or “pile”) of objects

Collection Interface

What is a collection?
*“Bag” (or “pile”) of objects (no ordering)

What does the Collection interface provide?
*add()

*remove()

econtains()

*|terator: a means of iterating over all objects
in the collection

List Interface

eWhat is a list?

* Ordered Collection
* Duplicates

List Interface

eWhat is a list?

* Ordered Collection
* Duplicates

Java API: List interface
* What else is provided over a Collection?

Linked Lists

*Example of a linked list using people ...
*Singly linked list versus doubly linked list
* How do we search for items?
* How efficient is it to add items?

e Java API: examine LinkedList API

LinkedList

e LinkedList: concrete class

* What methods are in LinkedList and not
ArrayList?

Critical data structure difference: LinkedList
vs. ArraylList
* Incremental allocation

* LinkedList makes adding to the head and tail of
the list cheaper

Choosing Lists

A LinkedList is used instead of an ArrayList
when:

*Size of structure changes radically over time
* Once Arraylists get big, they stay big

eRandom access not needed
* What does this do to binary search?

*Insertion and deletion at head and tail and
more common than search

Administriva

*Project 2 should be complete
* Code reviews due in 1 week

*Sign up for a slot or come in for a “walk-in”
review

*Lab 8 is available and due on Monday @7pm

*Project 3 will be out by the weekend (with
discussion on Monday)

Iterator<k>

Object that iterates over some collection

*hasNext(): is there another item in the
collection that hasn’t been “touched”

*next(): return the next item

LinkedList Example

Linked List of Person...

Iterator<k>

*In general, you should not be modifying the
list as you are iterating over it!

*Can lead to very strange behavior

*Exception: Iterator<E> provides a remove()
method

Collection vs Collections

* Collection interface: The root of the JCF
hierarchy
* Represent a group of objects
* Operations include: add/remove/iterate

*Collections class: provides many static methods,
including: shuffle, max, min, reverseOrder, sort,
frequency, ...

Examine API for Collections and Collection...

Person example Il

*Sort the Persons
* Name, then ID
* Reverse order by ID

*Use an lterator to loop through the scores
* Explicit Iterator
* Implicit lIterator (for each loop)

Abstract Data Type: Queue

*Example of queue with people to buy tickets
*Key: First in, First out (FIFO)
*See: Java API: Queue Interface

Example

Store people about to compete in an event in
Queue

Priority Queue

*Standard Queue: order by insertion order

*Priority Queue: order by some ordering
* Natural order or defined by a Comparator

*Java APIl: Examine PriorityQueue API

*Example: office hours
* What happens if President Boren shows up?

Stack

elast in First out (LIFO)

* Add (push) and remove (pop) items to/from
the top of the stack

* Data structure for Stack is extensible array

Stack

Example: grading exams

*Example: System stack
* main() method is at the bottom
* Most recent method call is at top

* Call a new method: pushes the method onto the
stack

* Return from a method: pops the top method off
of the stack

Uses for Collections Class
* Shuffle exam questions on multiple choice tests

*Frequency to figure out how many coins of each
type you have

*ReplaceAll to fix all of an item in an inventory
(recalls etc)

*ReplaceAll to give everyone the same grade

* IndexOfSublist to return a sublist all students
born in Boston assuming they are sorted by
nirth location

*nCopies to make lots of clones
* Empty to get rid of all your homework

Backward Compatibility

eVVector and Stack
e Part of Java from the start
e Were retrofitted into the JCF

* Synchronized— expensive, but needed for
threading

*\ector
e Data structure: extensible array

e Added methods from List interface that weren’t
in class

* Added generic
e Uses Enumeration interface (old form of Iterator)

Sets and Maps

Set Interface

*Set is another abstract data type
* Elements in a set are not ordered
* No duplicate elements

*How could Set be implemented with an array
data structure?
* Why isn’t this good enough?

Set Interface

*Examine class hierarchy in API
* Note similarities and differences to design for
ArrayLlist hierarchy

*What operations are typical of sets in
mathematics?

*What operations does Java Set support?

* Which Java Set operations are similar to those in
discrete math?

Choosing Sets

*Sets are used when order isn’t important
* We're so used to using arrays, that we tend to
think of order being important when it isn’t
*Example: Bug tracking software
* Store bug reports
* Find bug reports

Example: grocery list

*Remember sets are the theoretical basis of
most of computer science—they are
everywhere

HashSet

HashSet is a data structure (also called a hash
table) that implements the Set interface

HashSet: Data Structure

Approach:

*Create a hash code from the object

* Summarizes the content of the object
* May not be unique
* Eclipse can generate automatically (** demo)

*We've seen this method in the Object class

*Use the hash code as an address in a huge
array (called a hash table)

Example

*Create a set of students
e What should our hash code be?

*Use set operations from Set Interface API
* http://docs.oracle.com/javase/tutorial/collection

s/interfaces/set.html

Andrew H. Fagg: CS 2334: Java Collections Framewor k

35

http://docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Example HashSet

*Suppose we’re storing numerical data

e Address is hashCode % tableSize

eLet the table size be 100
*|nsert 23983, 10484, 3817692, 1968372, 938983

*Collision: move to the next free spot in the
table

*Classic time/space tradeoff

Hash Set

contains(Object 0):
*Compute the hash value for the object
e Compute the address in the hash table

*|s anything at that address?
* No: return false
*Yes: is that object equal to 0?

Hash Set

contains(Object 0):
*Compute the hash value for the object
e Compute the address in the hash table

*|s anything at that address?
* No: return false

*Yes: is that object equal to 0?
* Yes: return true

Hash Set

contains(Object 0):
*Compute the hash value for the object
e Compute the address in the hash table

*|s anything at that address?
* No: return false

*Yes: is that object equal to 0?
* Yes: return true
* No: increment the hash table address

Critical Hash Table Measurements

Load factor: # of used elements/table size

*Load factor needs to stay small for a table to
work well

*When the load factor gets close to 1,
clustering is a problem (many address
increments)

*HashSet fixes this by reallocating the table
when it gets too dense (expensive!)

Critical Hash Table Measurements

Choosing the table size, the load factor, and
the hash functions are critical parts to the
success of hashing

*|f these are done well, hashing is fabulous

*Lots of people don’t use hashing because of
fear of these factors

*If managed correctly, hashing can be
incredibly good

Example for Home

*Create a HashSet that stores 1000 randomly
generated integers

*Search for each integer

* Measure time
e System.nanotime()

*Compare to ints stored in an ArrayList
* How many lines of code have to be changed?

* Compare what happens when table size properly
created initially

TreeSet

*The problem with HashSet is that elements
aren’t ordered in any useful way

* How would you sort data in a hash table?

* LinkedHashSet orders elements by time of entry,
but this often isn’t a useful order

*TreeSet uses a natural ordering (Comparable)
e Can use alternate ordering (Comparator)

Note: we are breaking from the mathematical
notion of set

How Does TreeSet Work?

*Example brief introduction of Binary Search
Tree
* Tree balancing

*Will see full implementations in CS 2413 Data
Structures

Abstract Data Type: Map

Stores <key, value> pairs

*Key used to organize data (no duplicates)
* Keys form a proper Set

*Value is the data itself (duplicates allowed)

Map

Example: In computer gaming, all objects are
stored in a Map <objectID, object>

*Objects are players, furniture, non-playable
characters, etc.

Map Interface

*Examine methods in API carefully
* How would you get iteration?

*Examine class hierarchy in API
* Lots of implementation options

Example

*Implement a map that stores and retrieves
names by an identification number
* Use HashMap

*Examine differences in data ordering with
HashMap, TreeMap, LinkedHashMap

* HashMap used a lot in Java!

Back to the Collections Class

 JCF stores its static methods in one shared
class

*Examine which methods apply to which type
* Why doesn’t Set have sort/reverse?

