
Java Collections Framework (JCF):
Lists, Stacks, Queues, Priority 

Queues, Sets, and Maps
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Administrivia

•Lab 5 graded

•Lab 6 grades coming soon

•Project 2 due on Wednesday
•Testing
•Exceptions
•Code review slots open

•Lab 8 released soon

•Project 3 coming this week

•Exam 1
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Data Structures vs Abstract Data Types

•Data Structure: 
•A specific way of organizing data and operations 

to access/use the data
•Structure of the data tied directly to the 

implementation 

•Abstract data type: An implementation 
independent group of data and a set of 
operations on this data
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Data Structures We Know

•Both arrays and ArrayList are data structures
• Implementation dependent

•What are the similarities between ArrayList
and arrays?
•Organization of data?
•Operations?

•What are the differences between these?
•Organization of data?
•Operations?
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Class Hierarchy for ArrayList

•Which are 
abstract data 
types?
•Which are 
data 
structures?
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Collection Interface

What is a collection?
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Collection Interface

What is a collection?

•“Bag” (or “pile”) of objects
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Collection Interface

What is a collection?

•“Bag” (or “pile”) of objects (no ordering)

What does the Collection interface provide?

•add()

•remove()

•contains()

•Iterator: a means of iterating over all objects 
in the collection
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List Interface

•What is a list?
•Ordered Collection
•Duplicates
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List Interface

•What is a list?
•Ordered Collection
•Duplicates

•Java API: List interface
•What else is provided over a Collection?
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Linked Lists

•Example of a linked list using people …
•Singly linked list versus doubly linked list
•How do we search for items?
•How efficient is it to add items?

•Java API: examine LinkedList API
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LinkedList

•LinkedList: concrete class
•What methods are in LinkedList and not 

ArrayList?

•Critical data structure difference: LinkedList
vs. ArrayList
• Incremental allocation
• LinkedList makes adding to the head and tail of 

the list cheaper
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Choosing Lists

A LinkedList is used instead of an ArrayList
when:

•Size of structure changes radically over time
•Once ArrayLists get big, they stay big

•Random access not needed
•What does this do to binary search?

•Insertion and deletion at head and tail and 
more common than search
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Administriva

•Project 2 should be complete
•Code reviews due in 1 week
•Sign up for a slot or come in for a “walk-in” 

review

•Lab 8 is available and due on Monday @7pm

•Project 3 will be out by the weekend (with 
discussion on Monday)
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Iterator<E>

Object that iterates over some collection

•hasNext(): is there another item in the 
collection that hasn’t been “touched”

•next(): return the next item
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LinkedList Example

Linked List of Person…
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Iterator<E>

•In general, you should not be modifying the 
list as you are iterating over it!

•Can lead to very strange behavior

•Exception: Iterator<E> provides a remove() 
method
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Collection vs Collections

•Collection interface:  The root of the JCF 
hierarchy 
• Represent a group of objects
•Operations include: add/remove/iterate

•Collections class: provides many static methods, 
including: shuffle, max, min, reverseOrder, sort, 
frequency, …

Examine API for Collections and Collection…
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Person example II

•Sort the Persons 
•Name, then ID
•Reverse order by ID

•Use an Iterator to loop through the scores
•Explicit Iterator
• Implicit Iterator (for each loop)
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Abstract Data Type: Queue

•Example of queue with people to buy tickets

•Key:  First in, First out (FIFO)

•See: Java API: Queue Interface
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Example

Store people about to compete in an event in 
Queue
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Priority Queue

•Standard Queue: order by insertion order

•Priority Queue: order by some ordering 
•Natural order or defined by a Comparator

•Java API: Examine PriorityQueue API

•Example: office hours
•What happens if President Boren shows up? 
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Stack

•Last in First out (LIFO)

•Add (push) and remove (pop) items to/from 
the top of the stack

•Data structure for Stack is extensible array
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Stack

•Example:  grading exams

•Example: System stack
•main() method is at the bottom 
•Most recent method call is at top
•Call a new method: pushes the method onto the 

stack
•Return from a method: pops the top method off 

of the stack
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Uses for Collections Class
•Shuffle exam questions on multiple choice tests
•Frequency to figure out how many coins of each 

type you have
•ReplaceAll to fix all of an item in an inventory 

(recalls etc)
•ReplaceAll to give everyone the same grade
• IndexOfSublist to return a sublist all students 

born in Boston assuming they are sorted by 
birth location
•nCopies to make lots of clones
•Empty to get rid of all your homework
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Backward Compatibility

•Vector and Stack
•Part of Java from the start
•Were retrofitted into the JCF
•Synchronized– expensive, but needed for 

threading

•Vector
•Data structure: extensible array
•Added methods from List interface that weren’t 

in class
•Added generic
•Uses Enumeration interface (old form of Iterator)
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Sets and Maps
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Set Interface

•Set is another abstract data type
•Elements in a set are not ordered
•No duplicate elements

•How could Set be implemented with an array 
data structure?
•Why isn’t this good enough?
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Set Interface

•Examine class hierarchy in API
•Note similarities and differences to design for 

ArrayList hierarchy

•What operations are typical of sets in 
mathematics?

•What operations does Java Set support?
•Which Java Set operations are similar to those in 

discrete math?
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Choosing Sets

•Sets are used when order isn’t important
•We’re so used to using arrays, that we tend to 

think of order being important when it isn’t

•Example: Bug tracking software
•Store bug reports
•Find bug reports

•Example:  grocery list
•Remember sets are the theoretical basis of 
most of computer science—they are 
everywhere
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HashSet

HashSet is a data structure (also called a hash 
table) that implements the Set interface
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HashSet: Data Structure

Approach:

•Create a hash code from the object
•Summarizes the content of the object
•May not be unique
•Eclipse can generate automatically (** demo)

•We’ve seen this method in the Object class

•Use the hash code as an address in a huge 
array (called a hash table)
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Example

•Create a set of students
• What should our hash code be?

•Use set operations from Set Interface API
•http://docs.oracle.com/javase/tutorial/collection

s/interfaces/set.html
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Example HashSet

•Suppose we’re storing numerical data

•Address is hashCode % tableSize

•Let the table size be 100
• Insert 23983, 10484, 3817692, 1968372, 938983

•Collision: move to the next free spot in the 
table

•Classic time/space tradeoff
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Hash Set

contains(Object o):

•Compute the hash value for the object

•Compute the address in the hash table

•Is anything at that address?
•No: return false
•Yes: is that object equal to o?  
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Hash Set

contains(Object o):

•Compute the hash value for the object

•Compute the address in the hash table

•Is anything at that address?
•No: return false
•Yes: is that object equal to o?  

• Yes: return true
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Hash Set

contains(Object o):

•Compute the hash value for the object

•Compute the address in the hash table

•Is anything at that address?
•No: return false
•Yes: is that object equal to o?  

• Yes: return true
• No: increment the hash table address
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Critical Hash Table Measurements

Load factor: # of used elements/table size

•Load factor needs to stay small for a table to 
work well

•When the load factor gets close to 1, 
clustering is a problem (many address 
increments)

•HashSet fixes this by reallocating the table 
when it gets too dense (expensive!)
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Critical Hash Table Measurements

Choosing the table size, the load factor, and 
the hash functions are critical parts to the 
success of hashing

•If these are done well, hashing is fabulous

•Lots of people don’t use hashing because of 
fear of these factors

•If managed correctly, hashing can be 
incredibly good
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Example for Home

•Create a HashSet that stores 1000 randomly 
generated integers

•Search for each integer

•Measure time
•System.nanotime()

•Compare to ints stored in an ArrayList
•How many lines of code have to be changed?
•Compare what happens when table size properly 

created initially
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TreeSet

•The problem with HashSet is that elements 
aren’t ordered in any useful way
•How would you sort data in a hash table?
• LinkedHashSet orders elements by time of entry, 

but this often isn’t a useful order

•TreeSet uses a natural ordering (Comparable)
•Can use alternate ordering (Comparator)

Note: we are breaking from the mathematical 
notion of set
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How Does TreeSet Work?

•Example brief introduction of Binary Search 
Tree
•Tree balancing

•Will see full implementations in CS 2413 Data 
Structures
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Abstract Data Type: Map

Stores <key, value> pairs

•Key used to organize data (no duplicates)
•Keys form a proper Set

•Value is the data itself (duplicates allowed)
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Map

Example: In computer gaming, all objects are 
stored in a Map <objectID, object>

•Objects are players, furniture, non-playable 
characters, etc.
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Map Interface

•Examine methods in API carefully
•How would you get iteration?

•Examine class hierarchy in API
• Lots of implementation options
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Example

•Implement a map that stores and retrieves 
names by an identification number
•Use HashMap

•Examine differences  in data ordering with 
HashMap, TreeMap, LinkedHashMap
•HashMap used a lot in Java!
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Back to the Collections Class

•JCF stores its static methods in one shared 
class

•Examine which methods apply to which type
•Why doesn’t Set have sort/reverse?
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