CS 2334
Project 1: Reading Data from Files

September 6, 2017

Due: 1:29 pm on Sept 20, 2017

Introduction

The Self-Initiated Prone Progression Crawler (SIPPC) is an assistive robot that aids
infants at risk for Cerebral Palsy as they learn how to crawl. The robotic platform
supports an infant’s weight and amplifies her crawling-like movements by carrying
her across the floor in the indicated direction. This interaction serves to encourage
the infant to continue practicing crawling movements and allows the infant to actively
explore her immediate environment.

Forearm

Back sensor
Lower leg Thigh and central
processor

Southerland (2012)

SIPPC Assistive Robot Kinematic Capture Suit

One sensor subsystem worn by the infant is a kinematic capture suit. Small iner-
tial measurement units (IMUs) are strapped to the infant at twelve different points.



These sensors, among other information, provide an estimate of the orientation of
key body segments. Combined with a skeletal model of the infant, we are able to
infer in real time the position of particular points on the infant, including the wrists
and feet. This position is recorded in the units of meters and is relative to the small
of the infant’s back. Furthermore, the coordinate frame is as follows: +X runs from
the small of the infant’s back to the head, +Y points to the right of the infant, and
+Z emanates from the back of the infant (hence, we have a right-handed coordinate
frame).

For this project, you will focus on the data from a single infant. The data are
organized into 5-minute trials, with samples of the left and right wrist positions
taken every 20 ms (50 Hz). The data are organized in a comma separated file
(CSV) format with one time sample on each row of the file.

We have provided data for two trials (one file for each trial). Your job is to read
in the data files, parse the data, create appropriate objects from these data, and
summarize the data using maximum, minimum, and average mathematical functions.
You will also continue to expand your use of unit tests beyond the lab and ensure
that your parsing and mathematical functions are correct. More details are below in
the Project Components section.

Note: due to unforeseen circumstances, such as temporary power loss or sensor
errors, sometimes the data are unavailable for one or more time steps. These sit-
uations are represented in the CSV files using the String “NaN” (short for Not A
Number). Make sure you don’t include these values in your statistical summaries.

Learning Objectives
By the end of this project, you should be able to:

1. parse structured data from a file,

2. create objects using data parsed from a file,
3. use mathematical transformations on Strings,
4. implement mathematical functions in code,

5. employ unit testing to ensure that different pieces of your code are functioning
properly, and

6. provide proper documentation in Javadoc format.



Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. Your group will turn in a single copy of your solution. Do not look at or
discuss solutions with anyone other than the instructor, TAs or your assigned team
member. Do not copy or look at specific solutions from the net.

Strategies for Success

e We encourage you to work closely with your other team member, meeting in
person when possible.

e Start this project early, as it cannot be completed in a single day.

e Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process. We suggest
that you start with the lowest-level classes (GeneralValue) and work your way
up to highest-level (Trial).

e As you implement a particular class, also write the corresponding unit test.

e Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Preparation
Import the existing projectl implementation into your eclipse workspace:

1. Download the project 1 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/projectl/projectl.
zip

2. File menu: Import
3. Select General/Eristing Projects into Workspace and then click Next

4. Select archive file: browse to the projectl.zip file


http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project1.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project1.zip

5. Click Finish

6. Once you create the new project, it may not initially know where to find the
standard Java libraries (it varies depending on your configuration).

(a) Project menu: Select properties
(b) Select Java Build Path / Libraries

(c) If the JRE System Library is not listed, then select Add library: JRE
System Library and click Next. Select Workspace default. Click OK

(d) If the JUnit Library is not listed, then select Add library: JUnit and click
Next. Select JUnit 4. Click Finish

(e) Click Apply and then OK

Project Design

As we begin to develop large programs, it becomes harder to keep all of the details
in your mind at once. A key skill for success in computer science is learning how to
chop big problems into small, manageable ones. In part, this involves the process
that you use to solve the problem (separating design from implementation and from
testing), but it also involves cutting the implementation into logical pieces that are
clearly independent and have simple interfaces between them. We first summarize
all of the key classes in the form of a UML diagram (next page), and then discuss
each class in detail. Note that the UML precisely defines the syntax of the interface
for a class (the public components) and hints at some of the implementation (the
private components). Do not deviate from this design, as it will result in
code that will not compile against our tests.



UML Design

Driver

+main(args:String[]) throws IOException

GeneralValue

-valid:boolean
-doubleValue:double

+GeneralValue()
+GeneralValue(strg:String)
+isValid():boolean
+getDoubleValue():double
+toString():String

3

1

Point3D

-values:GeneralValue[3]

+Point3D(x:GeneralValue, y:GeneralValue, z:GeneralValue)
+getDimValue(dimension:int):GeneralValue
+getValues():GeneralValuel[]

+toString():String

2
1

State

-leftWrist:Point3D
-rightWrist:Point3D
-time:double

+State(strg:String)
+getLeftWrist():Point3D
+getRightWrist():Point3D
+getTime():double
+toString():String

Trial

-stateList:ArrayList<State>
-infantlD:String

-week:int

-fileName:String

+Trial(directory:String, infantID:String, week:int) throws IOException
+getState(index:int):State

+getSize():int

+getinfantlD():String

+getWeek():int

+getFileName():String

+getMaxLeftWrist(dimension:int):double
+getMinLeftWrist(dimension:int):double
+getAveragelLeftWrist(dimension:int):double




Classes and Other Components

1. Use proper documentation and formatting (Javadoc and in-line documentation )

This is important for debugging and for communication with your project
partner and your future, possibly sleep-deprived, self. You may re-use your
project code in future projects this semester, so don’t make it obfuscated

Use the same documentation standards that we established for Lab 1

2. Create a class called GeneralValue

This immutable class contains a single sample value (a double called dou-
bleValue) and a Boolean flag (called walid). The flag indicates whether
the sample is valid

The default constructor creates an invalid sample.

A second constructor accepts a String. On construction, if this String is
“NaN”, then the GeneralValue is invalid. Otherwise, this String can be
safely interpreted as a double (the value of which is placed in double Value).

We expect that a user of this class will only ask for the value of a Gener-
alValue object if the value is known to be valid.

This class contains a complete set of getters, using the standard names.
Note that there are no setters

This class contains an appropriate toString() method that will return the
String “invalid” if the GeneralValue is invalid; if valid, the method will
return a String that represents the value with exactly 3 digits after the
decimal point (for example, “98.348”). See String.format() for an example
of how to implement this easily.

3. Implement unit tests for the GeneralValue class. These tests should cover all
possible cases

4. Create a class called Point3D that will represent a three-dimensional position
in Cartesian space. Note: this class is not to be confused with the Java API
implementation of Point3D.

The three coordinates are represented using a primitive array of General-
Value objects, in X/Y /7 order



The constructor takes as input three individual GeneralValue objects, in

X /Y /Z order

This class provides a getDim Value() method that returns the General-
Value for the specified dimension (0=X, 1=Y, 2=7).

This class also provides a get Values() method that returns the entire array

of GeneralValues.

Finally, this class provides a toString() method that returns a String
in the format: “x,y,z”, where each dimension is the value of General-
Value.toString() for the corresponding value. For example:

4.321,42.000,invalid

5. Create a unit test class, called Point3DTest that cover your Point3D class.

6. Create a class called State that will represent the state of the kinematic capture
suit for a single instant in time:

Examine one of the CSV files that we have provided in the project (see
the data directory (folder)).

This class contains instance variables for the position of the infant’s left
and right wrists, and the time at which the positions were sampled.

This class provides one constructor that takes a String as a parameter.
This String contains seven, comma-separated substrings. The first sub-
string is a double value that represents the time at which this particular
State was sampled. The remaining substrings are either “NaN” or cor-
responds to a valid double value. These six substrings correspond to the
left wrist X/Y/Z and the right wrist X/Y /Z positions, respectively.

This class provides getters for all three of the properties.

This class also provides a toString() method that returns a String rep-
resentation of that State, including the time (with two decimal places of
resolution) and the positions of the left and right wrists, respectively. The
format is as follows:

2.00: left_wrist=<0.258,0.040,0.217>, right_wrist=<0.189,—0.264,—0.023>

Note the spaces and the resolution of the double values.



7. Implement unit tests for the State class. These tests must cover your entire
class.

8. Create a class called Trial that will represent a 5-minute trial in which samples
(States) are recorded every 20 ms:

This class includes an instance variable of type
ArrayList<State> called stateList that stores a sequence of State objects
that make up a trial.

This class also includes a String instance variable called infantID that
represents the infant from which the data come.

The instance variable week is an int that represents which week the trial
comes from (in general, the weeks are numbered 1,2, ...).

The instance variable fileName is a String that represents the file name
from which the trial is loaded. This String includes the directory (folder)
in which the file has been placed.

The constructor takes as input a base directory (folder) in which the CSV
file is located, the infantID and the week. This information is first used
to construct a fileName. For example, if you are loading a file from the
data directory inside of your project! directory and the infantID is “k1”
and the week is 5, then the file name will be:

data/subject_k1_w05.csv

Note that we use the forward slash (/) here to indicate a directory. This
form of specifying directories is portable across operating systems. If you
use the back slash (\), while this might work under Windows, it will not
work on our server.

The role of the constructor is to fill-in the set of instance variables. In
particular, the constructor must open the CSV file, create a State object
from each row of the file and add the object to stateList (in order).

This class provides getters for infantID, week and fileName.

This class allows access to specific States through the getState() method.
This method takes as input an index for the ArrayList.

This class provides a getSize() method that returns the number of States
in stateList.



e This class provides a method getMazLeft Wrist() that takes as input a
dimension of interest (0 = X, 1 = Y and 2 = Z) and returns the maximum
value of the specified dimension of the left wrist position. Note that you
must properly handle any invalid values that might occur in the list of
states. You may assume that any file contains at least one valid value in
each dimension.

e This class also provides corresponding methods getMinLeft Wrist() and
getAverageLeft Wrist().

9. Implement unit tests for the Trial class. One way to accomplish this is to
create a test data file for which you know the correct max/min/average values.
Note any data file that you use for testing must not be placed in the project’s
data directory. Instead, place these CSV files in a different directory, such as
mydata.

10. Create a class called Driver that contains your main method. This Driver
will create a Trial instance and print out information about about the Trial.

Final Steps

1. Generate Javadoc using Eclipse for all of your classes. Make sure to take this
step after you change your code and before you submit to Web-Cat.

2. Open the project1/doc/indez.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that all of your classes are listed (five classes plus four JUnit test classes)
and that all of your methods have the necessary documentation.

Submission Instructions

e All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, September 20th (i.e, before class begins)

e Submit your project to Web-Cat using one of the two procedures documented
in the Lab 1 specification.

Note: if you submit your code directly to Web-Cat by creating your own jar
file and then submitting, it is imperative that you do not include the data



directory. If you do include this directory, then it might be rejected from the
server because your jar file is too large. Don’t worry: we will have a copy of
the data directory there for you to use (with all of the CSV files you expect).

Grading: Code Review

All groups must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

e Submit your project for grading to the Web-Cat server.

e Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1.

Schedule a 15-minute time slot in which to do the code review. We will use
Canvas to schedule these (instructions are forthcoming). You must attend
the code review during your scheduled time. Failure to do so will leave
you with only option 2 (no rescheduling of code reviews is permitted).
Note that scheduled code review time may not be used for help with a
lab or a project, it must be used for a code review itself.

“Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project.

e Both group members must be present for the code review

e During the code review, we will discuss all aspects of the rubric, including:

1.
2.

The results of the tests that we have executed against your code

The documentation that has been provided (all three levels of documen-
tation will be examined)

The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced

e If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review

e The code review must be completed by Wednesday, September 27th to receive
credit for the project

10



Notes

Some methods will raise an [OException. It is OK in this project if you deal with
this by having your methods throw this exception. Note that multiple methods will
need to do this, including your main() method (Eclipse will tell you where to do
this). Later in the semester, we will cover the details of Exceptions.

The largest value that can be represented by a double is Double. POSITIVE_INFINITY,
and the most negative value is Double. NEGATIVE_INFINITY.

In our UML diagram, we are being very prescriptive of the required object prop-
erties and methods (and their visibility). Do not alter this design.

Testing: the different “@QTest” methods will be executed in an arbitrary order
(don’t assume the implementation order). In some cases, however, you may wish to
execute a method first that creates or loads in a data structure that is then used by
multiple test methods.

1. Declare the shared data structure elements as static class variables of the test
class

2. Initialize these data structures using a method that is declared as
“@BeforeClass”. Remember that you will need to import the BeforeClass class
(Eclipse will give you the right option if you mouse over the undefined Before-
Class reference).

References

e The Java API: https://docs.oracle.com/javase/8/docs/api/

e The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

e JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

11


https://docs.oracle.com/javase/8/docs/api/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

e Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

e Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

e Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

e Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

e Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

12



If you do not submit compiled javadoc for your lab, 5 points will be deducted
from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late. For a submission to be considered on time, it must arrive at the
server by the designated minute (and zero seconds). For a deadline of 9:00, a
submission that arrives at 9:00:01 is considered late (in this context, it is one
minute late). Assignments arriving 48 hours after the deadline will receive zero
credit.

After 30 submissions to Web-Cat, you will be penalized one point for every
additional submission.

Web-Cat note: 24 hours before the deadline, the server will stop
giving hints about any failures of your code against our unit tests.
If you wish to use these hints for debugging, then you must complete your
submissions 24 hours before the deadline.

13



