
CS 2334
Project 2: Class Abstractions

September 20, 2017

Due: 1:29 pm on Wednesday, Oct 11, 2017

Introduction

In project 1, you had your first exposure to some of our infant motion data. Here, the
data were relatively clean (though some samples were not valid) and you computed
statistics over the states within a trial. In this project, we will substantially expand
the data set by representing all of the trials that belong to a single infant, and
computing statistics over all states within individual trials, and over all trials for a
given infant. In addition, the data will not be so clean – there can be some trials in
which certain position variables are never valid.

In order to simplify our implementation, we will make heavy use of class abstrac-
tion. You will also engage in a process of refactoring, where your original project 1
code base is reorganized to simplify and extend the implementation.

Learning Objectives

By the end of this project, you should be able to:

1. Load a set of files from a directory (folder)

2. Create and use abstract objects in appropriate ways

3. Make use of polymorphism in code

4. Continue to exercise good coding practices for documentation and unit testing

1

Proper Academic Conduct

This project is to be done in the groups of two that we have assigned. You are to
work together to design the data structures and solution, and to implement and test
this design. You will turn in a single copy of your solution. Do not look at or discuss
solutions with anyone other than the instructor, TAs or your assigned team. Do not
copy or look at specific solutions from the net.

Strategies for Success

� Do not make changes in the specification that we have provided. At this stage,
we are specifying all of the instance variables and the required methods.

� When you are implementing a class or a method, focus on just what that
class/method should be doing. Try your best to put the larger problem out of
your mind.

� We encourage you to work closely with your other team member, meeting in
person when possible.

� Start this project early. In most cases, it cannot be completed in a day or two.

� Implement and test your project components incrementally. Don’t wait until
your entire implementation is done to start the testing process.

� Write your documentation as you go. Don’t wait until the end of the imple-
mentation process to add documentation. It is often a good strategy to write
your documentation before you begin your implementation.

Class Design

In project 1, a Trial is composed of a list of individual States. This former class
provided functionality that enabled us to compute statistics over the States. In this
project, we will introduce a representation for an Infant, for which we have a list
of Trials. At the Infant level, we would like to compute the same sorts of statistics
as we did for Trials. Here, we define the maximum position for an Infant to be the
maximum over the Trials (which, themselves are maxima over States). Likewise, the
average position for an Infant is the average over the Trials.

2

Below is a complete UML diagram for our key classes:

I n f a n t

- t r ia lLis t :ArrayLis t<Tria l>
- infant ID:Str ing
-MAX_WEEK:int = 16

+Infant (d i rec tory :S t r ing , in fan t ID:St r ing) th rows IOExcept ion
+get I tem(index: in t) :Tr ia l
+ge tS ize () : i n t
+ge t In fan t ID() :S t r ing

S i n g l e I t e m A b s t r a c t

+getMaxLef tWris t (d im: in t) :Genera lValue
+getMinLef tWris t (d im: in t) :Genera lValue
+getAverageLef tWris t (d im: in t) :Genera lValue

Mul t i p l e I t emAbs t rac t

+ge tS i ze () : in t
+ge t I t em(index: in t) :S ing le I t emAbs t rac t
+getMaxLef tWris t (d im: in t) :Genera lValue
+getMinLef tWris t (d im: in t) :Genera lValue
+getAverageLef tWris t (d im: in t) :Genera lValue

Run t imeExcep t ion

Inval idValueExcept ion

+Inva l idValueExcep t ion(message :S t r ing)

Dr ive r

+main(a rgs :S t r ing[]) th rows IOExcep t ion

Tr ia l

- s t a t eL i s t :Ar rayLi s t<S ta t e>
- infant ID:Str ing
-week: in t
- f i l eName:St r ing

+Tria l (d i rec tory :St r ing , infant ID:St r ing , week: in t) throws IOExcept ion
+ge t I t em(index : in t) :S t a t e
+ge tS ize () : i n t
+ge t In fan t ID() :S t r ing
+ g e t W e e k () : i n t
+ g e t F i l e N a m e () : S t r i n g

S t a t e

- lef tWrist :Point3D
-r ightWris t :Point3D
- t ime:double

+ S t a t e (s t r g : S t r i n g)
+ge tLef tWris t () :Po in t3D
+ge tRigh tWris t () :Po in t3D
+ge tT ime() : doub l e
+ toS t r i ng () :S t r i n g
+getMaxLef tWris t (d im: in t) :Genera lValue
+getMinLef tWris t (d im: in t) :Genera lValue
+getAverageLef tWris t (d im: in t) :Genera lValue

Po in t3D

-values :Genera lValue[3]

+Point3D(x:Genera lValue , y :Genera lValue , z :Genera lValue)
+ge tDimValue(d imens ion : in t) :Genera lValue
+getValues() :Genera lValue[]
+ toS t r i ng () :S t r i ng

Gene ra lVa lue

-val id:boolean
-doubleValue :double

+Gene ra lVa lue ()
+Gene ra lVa lue (s t rg :S t r i ng)
+Genera lVa lue(doub leValue :doub le)
+isVal id() :boolean
+ge tDoub leVa lue () :doub le
+isLessThan(va lue :Genera lValue) :boo lean
+i sGrea te rThan(va lue :Genera lVa lue) :boo lean
+ to S t r i ng () :S t r i ng

*

1

*

1

2

1

3

1

The key aspects of the high level design are:

� The InvalidValueException is a simple extension of the RunTimeExcep-
tion.

� The SingleItemAbstract class is an abstract class that is the parent to all
classes about which statistics are computed. Instances of these classes generally

3

contain at least one State. This abstract class requires subclasses to implement
our three statistics methods.

� The State class now extends the SingleItemAbstract class. Add to this
class implementations of the required statistics methods. Remember that these
methods are computing statistics over a single State.

� The MultipleItemAbstract class is also an abstract class that is the par-
ent for all classes that contain a list of items. This class requires subordinate
classes to provide accessor methods to this list. Using these accessor meth-
ods, this class provides concrete implementations of the getMinLeftWrist(),
getMaxLeftWrist() and getAverageLeftWrist() methods.

� The Trial class contains a list of States corresponding to one trial.

� The Infant class contains a list of Trials corresponding to a single infant.

Project Components

Please start from your project1 implementation by copying this project into a new
project2 project (in the Package Explorer in Eclipse, you can copy and paste entire
projects).

Here are the key steps for developing this project:

1. Download new data and import the data into your project2/data directory:

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project2-data.

zip

2. Copy the data into your project2 workspace. These data files must be placed
into project2/data/

3. The GeneralValue class has several new elements:

� There is a new constructor that takes as input a double value. If the
parameter to this constructor is NaN, then the GeneralValue is in-
valid. Otherwise, the GeneralValue is valid and its value is equal to the
parameter value.

� getDoubleValue() is augmented to throw an InvalidValueException if
the GeneralValue is not valid.

4

http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project2-data.zip
http://www.cs.ou.edu/~fagg/classes/cs2334/projects/project1/project2-data.zip

� isLessThan() and isGreaterThan() are two new methods that compare one
GeneralValue to another. These will be used in your new implantation
of the Max and Min methods.

– The isLessThan(GeneralValue v) method will behave accordingly:
this v return value

5 7 true
5 5 false
5 3.2 false
5 invalid true

invalid 3.7 false
invalid invalid false

– The isGreaterThan(GeneralValue v) method will behave as follows:
this v return value

5 7 false
5 5 false
5 3.2 true
5 invalid true

invalid 3.7 false
invalid invalid false

– See the Double class for some useful tools for implementing and
testing this class.

4. Update your GeneralValueTest class to address the changes to the Gener-
alValue class.

5. Implement your SingleItemAbstract class. However, there are no tests that
you can implement for this class, since it is abstract. Note that the getMinLeft-
Wrist(), getMaxLeftWrist() and getAverageLeftWrist() methods now return a
GeneralValue object (in project 1, this was a double). This change allows
us to return invalid values. An invalid value should be returned in one of two
situations: 1) if there are no States to compute the statistic over (e.g., if a
Trial has no states) or 2) if all of the values are themselves invalid (e.g., if we
had a bad sensor for an entire Trial).

6. Refactor your State implementation. This class now extends SingleItemAb-
stract. Add implementations for the getMinLeftWrist(), getMaxLeftWrist()
and getAverageLeftWrist() methods. Remember that these statistic comput-
ing methods are still answering questions with respect to the set of available
States.

5

7. Update your StateTest unit tests. Make sure to cover the new methods.

8. Create the abstract MultipleItemAbstract class. Provide the two abstract
method prototypes and concrete implementations for the three statistics meth-
ods.

� Move your implementations of these statistics methods from your project 1
Trial class. You will have to make some adjustments to get these method
to fit within the new implementation.

� These methods can ask how many sub-objects there are using the “promised”
getSize() method.

� The individual sub-objects can be fetched using the promised getItem()
method.

� Since this class is abstract, you can’t test it directly (so, there is no cor-
responding JUnit class).

9. Refactor your Trial class to fit the new specification (these changes are rela-
tively small).

10. Update your TrialTest class. Note that this is one place where you must test
the statistics methods defined by the parent class.

11. Create a class called Infant that will represent all of the weeks associated with
an individual infant.

� The constructor takes as input a directory and infantID. This constructor
attempts to create Trials for all of the weeks between 1 and MAX WEEK.
Every Trial that is successfully loaded is stored in the trialList.

� The remaining implementation is similar to that of Trial.

12. Create a JUnit test called InfantTest. Make sure to test the statistics methods
provided by the parent class

13. Create a Driver class that creates an Infant and reports the statistics.

6

Final Steps

1. Generate Javadocs for your project. Make sure to include all of your classes
and to place the documentation into you doc directory.

2. Open the project2/doc/index.html file using your favorite web browser or Eclipse
(you can right-click on the file and Open With: Web Browser). Check to make
sure that all of your classes are listed and that all of your methods have the
necessary documentation.

Submission Instructions

� All required components (source code and compiled documentation) are due
at 1:29 pm on Wednesday, October 11 (i.e., before class begins)

� Submit your project to Web-Cat using one of the two procedures documented
in the Lab 1 specification. Make sure that you submit to the Project 2 area.

Grading: Code Review

Your group must attend a code review session in order to receive a grade for your
project. The procedure is as follows:

� Submit your project for grading to the Web-Cat server.

� Any time following the submission, you may do the code review with the in-
structor or one of the TAs. For this, you have two options:

1. Schedule a 15-minute time slot in which to do the code review. We will
use Canvas to schedule these. You must attend the code review during
your both scheduled time. Failure to do so will leave you with only option
2 (no rescheduling of code reviews is permitted). Note that scheduled
code review time may not be used for help with a lab or a project, it
must be used for a code review itself.

2. “Walk-in” during an unscheduled office hour time. However, priority will
be given to those needing assistance in the labs and project.

� Both group members must be present for the code review.

7

� During the code review, we will discuss all aspects of the rubric, including:

1. The results of the tests that we have executed against your code.

2. The documentation that has been provided (all three levels of documen-
tation will be examined).

3. The implementation. Note that both group members must be able to
answer questions about the entire solution that the group has produced.

� If you complete your code review before the deadline, you have the option of
going back to make changes and resubmitting (by the deadline). If you do this,
you may need to return for another code review, as determined by the grader
conducting the current code review.

� The code review must be completed by Wednesday, October 18th to receive
credit for the project.

Notes

� There are multiple ways to define the average position of a wrist for an Infant.
For this project, we will define an Infant’s average as the average over the
Trials that belong to that Infant (even if these trials contain different numbers
of States).

References

� The Java API: https://docs.oracle.com/javase/8/docs/api/

� The API of the Assert class can be found at:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

� JUnit tutorial in Eclipse:
https://dzone.com/articles/junit-tutorial-beginners

8

https://docs.oracle.com/javase/8/docs/api/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://dzone.com/articles/junit-tutorial-beginners

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the project
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

9

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every twelve hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose five points for every twelve hours that your assignment is sub-
mitted late. For a submission to be considered on time, it must arrive at the
server by the designated minute (and zero seconds). For a deadline of 9:00, a
submission that arrives at 9:00:01 is considered late. Assignments arriving 48
hours after the deadline will receive zero credit.

After 30 submissions to Web-Cat, you will be penalized one point for every
additional submission.

Web-Cat note: 24 hours before the deadline, the server will stop
giving hints about any failures of your code against our unit tests.
If you wish to use these hints for debugging, then you must complete your
submissions 24 hours before the deadline.

10

