Deadlock

Introduction to Operating Systems

Modeling Resource Contention

» System consists of resources

* Resource types R, R,, . . ., R,
CPU cycles, memory space, I/O devices

» Each resource type R, has W. instances.

* Each process utilizes a resource as follows:
* Request
» Use (exclusive)
* Release

Conditions for Deadlock

* Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource Is waiting
to acquire additional resources held by other processes

* No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task

 Circular walit: a process is holding onto a resource (R) while it is
waiting for some other resource that can only be released after R
IS released

Andrew H. Fagg: Introduction to Operating Systems 3

The Circular Walit Problem

A set {P,, P4, ..., P,} of waiting processes:
* P, Is walting for a resource that is held by P,

P, IS waliting for a resource that is held by P,
P, _, is waiting for a resource that is held by P,, and
* P, Is walting for a resource that is held by P,.

The Circular Walit Problem

Dining Philosophers problem:
* All philosophers have picked up one chopstick
« Each is waiting for their 2"d chopstick

* But none can be released until one of the philosophers
can pick up that 2" chopstick...

Resource Allocation Graph

* Vertices are of two types:

P ={P,, P,, ..., P,}, the set consisting of all the processes In
the system

*R={R,, R,, ..., R}, the set consisting of all resource types
In the system

* Request edge: directed edge P;—> R;

- Assignment edge: directed edge R, — P,

Andrew H. Fagg: Introduction to Operating Systems

Resource Allocation Graph: Notation

* Process Q

« Resource Type with 4 instances

oo
oo

oo
oo

» P, requests instance of R; _'

<.

* P; Is holding an instance of R

ot
oo

-

e State:

P1
P2

Nas
Nas

P3

NasS

R2 and Is waliting for R1
R2 and Is waiting for R3

R3

* Assuming no other allocation

requests, can all of the processes

complete execution?
* Yes!

Example: Resource Allocation Graph

Example 2: Resource Allocation Graph

R; Ry
e State: & o
\ \

* P1 has R2 and is waiting for R1
* P2 has R2 and is waiting for R3

* P3 has R3 and is waiting for R2 e @ @

* Assuming no other allocation
requests, can all of the processes \o
complete execution? S

* No! Everyone Is waiting on
somebody else

Example 3: Resource Allocation Graph

e State:

P1
P2
P3

D4

NasS
NasS
NasS

NasS

R2 and Is waliting for R1
R1
R1 and is walting for R2

R2

* Assuming no other allocation
requests, can all of the

processes complete execution?

e Yes!

/

Deadlock

How do we know If we have a deadlock?
* |f graph contains no cycles = no deadlock

* |f graph contains a cycle =
* |f only one instance per resource type, then deadlock
* |f several instances per resource type, possibility of deadlock

Dealing with Deadlocks

* Ensure that the system will never enter a deadlock
state:
« Deadlock prevention
« Deadlock avoidance

* Allow the system to enter a deadlock state and then
recover

* Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
iIncluding UNIX

Deadlock Prevention

Approach: we don't allow one of the four necessary
conditions to hold

* Mutual Exclusion
* Hold and Wait

* NO preemption
 Circular wait

Deadlock Prevention

Mutual Exclusion
* Do not lock sharable resources (e.g., read-only files)
e But, this does not address non-sharable resources

Deadlock Prevention

Hold and Wait

» Guarantee that whenever a process requests a resource, It
does not hold any other resources

* One approach: process must request all resources up front,
as a single unit

* Another approach: only allow a process to request
resources only when the process has none allocated to it

* Problems: Low resource utilization; starvation possible

Deadlock Prevention

No Preemption:

* If a process that Is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are released

* Preempted resources are added to the list of resources
for which the process is waiting

* Process will be restarted only when it can regain its old
resources, as well as the new ones that it Is requesting

Deadlock Prevention

Circular Walit
* Impose a total ordering of all resource types

* Require that each process requests resources in an
iIncreasing order of enumeration

* Two processes cannot both block while waiting for
resources that are held by the opposite process

/* thread one runs in this function */

void *do work one(void *param)

{

Deadlock Example

Prevention:

e Could force total
ordering on the locks }

 Could force one thread
to give up locks when {
preempted

/*

volid *do work two (void *param)

pthread mutex lock(&first mutex);
pthread mutex lock (&second mutex);

/** * Do some work */
pthread mutex unlock (&second mutex) ;

pthread mutex unlock (&first mutex);

pthread exit (0);

thread two runs in this function */

pthread mutex lock (&second mutex) ;
pthread mutex lock (&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex) ;

pthread exit (0);

DeadIOCk Example volid transaction (Account from,

Account to,

Two different transactions execute double amount)
concurrently: {

* Transaction 1 transfers $25 from
account A to account B, and

mutex lockl, lock?2;
lockl = get lock(from);
lock2 = get lock(to);

e Transaction 2 transfers $50 from acquire (lockl) ;
account B to account A acquire (lock2) ;

F)] _ withdraw (from, amount):;
reventlon' deposit (to, amount);

 Could have a total ordering of release (lock?) ;
accounts release (lockl) ;

» Could require all resources to be
allocated simultaneously

Deadlock Prevention

» Kernel can take preventative steps
« Resource utilization could be poor

 Or the application programmer can take explicit steps
* E.g., ordering of lock operations
« Dealing with preemption

 This approach relies on programmers doing the right
» Generally, this is a bad idea...

Deadlock Avoidance

» Deadlock prevention technigues place a lot of
restrictions on what can be done

* |n particular: allocation decisions are made using uniformly
applied rules
* Next approach (avoidance): dynamically make
allocation decisions on a case-by-case basis

« Only allow an allocation to proceed if there Is no opportunity
In the current system for deadlock

Deadlock Avoidance

Process Model:

« Each process must declare up front the maximum
number of resources of each type that it may need to
complete execution

* Then, during execution, the process may request that
resources as they are actually needed
« Must respect the declared needs at the start

System State

Three possible situations:
» Deadlock: a circular wait has happened

« Safe: given the current allocations and the potential
allocation of the remaining needs, all processes can
complete without deadlock occurring

» Unsafe: deadlock has not occurred, but if the right set
of needs are requested, then deadlock will happen

Safe State

» System is in safe state if there exists a sequence <P,, P,, ..., P>
of ALL the executing processes such that:
« P, can allocate its remaining needs from the available resources

« Each P, can allocate its remaining needs from the available resources
plus those currently held by processes P, ... P,

e That Is:

* If P, resource needs are not immediately available, then P; can wait
until all P; have finished (where] <1)

P, can then obtain the needed resources, execute, return allocated
resources, and terminate

* When P, terminates, P, ,, IS guaranteed to be able to obtain its needed
resources, etc.

System State

Three possible situations:

 Deadlock: a circular walit has
nappened

» Safe: all processes can complete /
without deadlock occurring

» Unsafe: deadlock has not
occurred, but if the right set of
needs are requested, then
deadlock will happen

unsafe

deadlock

System Allocation Algorithm

» Goal: always stay In a safe state
* When a new reguest Is made by a process:

Kernel tests whether the new state will be safe or not
f safe, then allocation i1s allowed

f unsafe, then the process is placed in a waiting queue until
a safe state can be achieved

Avoidance Algorithms

* All resources are single-instance:

* We can just look at the resource allocation graph to
determine whether a cycle can happen

* Multiple instances of some resources:
» Use the Banker’s Algorithm to determine safe vs unsafe

Resource-Allocation Graph Scheme

» Claim edge P; — R;indicated that process P; may request
resource R;; represented by a dashed line

« Claim edge converts to request edge when a process requests a
resource.

* Request edge: P; — R; solid line
* Request edge converted to an assignment edge when the
resource Is allocated to the process
* Assignment edge: R;— P;
 When a resource Is released by a process, assignment edge
reconverts back to a claim edge

 All resources must be claimed before any allocation requests are
made

« P1.

Resource-Allocation Graph

« Claimed: R2
* Assigned R1

- P2:

e Claimed: R2
* Requested: R1

Two Inde
* Should
* Should

pendent questions:
P1 be assigned R2?

P2 be assigned R2?

Resource-Allocation Graph

Assign R2 to P2:
* Now In an unsafe state!

* If P1 then requests R2, we
will have deadlock

Conclusion: we should not s

assign R2 to P2 right now :

A;

Resource-Allocation Graph Algorithm

Suppose that process P; requests a resource R’

* The request can be granted only If converting the
request edge to an assignment edge does not result in

the formation of a cycle in t

e |f this IS the case, then the
waiting queue

ne resource allocation graph

orocess is placed into a

Banker’s Algorithm

* Multiple instances of resources

* Each process must claim the maximum use of
resources before any requests can be made

* When a process requests a resource it may have to wait

* When a process gets all its resources it must return
them and terminate in a finite amount of time

Data Structures for the
Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

« Available: Vector of length m. If available [j] = k, there are k instances of
resource type R; available to be allocated

« Max: n x m matrix. If Max [i,j]] =k, then process P; may request at most k
instances of resource type R;

« Allocation: n x m matrix. If Allocation[i,j] = k then P; is currently allocated k
Instances of R

* Need: nx m matrix. If Need[i,]] = k, then P; may need k more instances of R;to

complete its task
Need [i,j]] = Max]i,j] — Allocation [i,]]

Banker’s Algorithm: Determining Safety

Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available
Finish [i] =falsefori=0,1,...,n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need, < Work
If no such i exists, go to step 4

3. Work = Work + Allocation,
Finishl[i] =true
go to step 2
4. If Finish [i] ==true for all I, then the system is in a safe state

Otherwise, it is unsafe

« Examples

Andrew H. Fagg: Introduction to Operating Systems

35

Using the Banker's Algorithm

Request; = request vector for process P;. If Request; [|] = k then process
P; wants k instances of resource type R;

1. If Request; > Need; raise error condition, since process has exceeded its
maximum claim

2. If Request, > Available, P, must wait, since the resources are not available

3. Pretend to allocate requested resources to P; by modifying the state as

follows:
Available = Available — Request;;
Allocation; = Allocation; + Request;;
Need; = Need, — Request;;
e If safe = the resources are allocated to P,
e |f unsafe = P, must wait, and the old resource-allocation state is restored

Banker's Example |ll

Process Allocation Max Available

A B C A B C A B C

D, 010 7 5 3 3 3 2
P 2 00 3 2 2
) 3 0 2 9 0 2
P 3 211 2 2 2
Pa o 0 2 4 3 3

https://www.geeksforgeeks.org/bankers-algorithm-in-operating-system-2/

Banker's Example |V

New request by Process 1: 1,0,2

 Will we be In a safe state?

Process Allocation Max Available
A B C A B C A B C

D, 010 7 5 3 3 3 2

) 2 00 3 2 2

) 30 2 9 0 2

F 3 211 2 2 2

Pa 0.0 ond 4 3 3

Deadlock Summary

Necessary conditions for deadlock (all must be true):
* Mutual Exclusion

* Hold and Walit

* No preemption

* Circular walit

Deadlock Summary

Deadlock Prevention:

* Fixed set of rules that apply to all situations
 Remove one of the necessary conditions

* Simple

« But: can be overly conservative and may not give us
good use of the available resources

Deadlock Summary

Deadlock Avoidance:

* Make context-specific decisions on the fly as to whether
an allocation request should be granted

* Single instance per resource type:
« Use allocation graph
* |f an allocation results in a cycle, then do not grant it

* Multiple instances per resource type:

» Banker’s Algorithm
« |f an allocation results in an unsafe state, then do not grant it

