
Deadlock
Introduction to Operating Systems

Modeling Resource Contention

• System consists of resources

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

• Request

• Use (exclusive)

• Release

Andrew H. Fagg: Introduction to Operating Systems 2

Conditions for Deadlock

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting

to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by

the process holding it, after that process has completed its task

• Circular wait: a process is holding onto a resource (R) while it is

waiting for some other resource that can only be released after R

is released

Andrew H. Fagg: Introduction to Operating Systems 3

The Circular Wait Problem

A set {P0, P1, …, Pn} of waiting processes:

• P0 is waiting for a resource that is held by P1

• P1 is waiting for a resource that is held by P2,

• …

• Pn–1 is waiting for a resource that is held by Pn, and

• Pn is waiting for a resource that is held by P0.

Andrew H. Fagg: Introduction to Operating Systems 4

The Circular Wait Problem

Dining Philosophers problem:

• All philosophers have picked up one chopstick

• Each is waiting for their 2nd chopstick

• But none can be released until one of the philosophers
can pick up that 2nd chopstick…

Andrew H. Fagg: Introduction to Operating Systems 5

Resource Allocation Graph

• Vertices are of two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system

• Request edge: directed edge Pi  Rj

• Assignment edge: directed edge Rj  Pi

Andrew H. Fagg: Introduction to Operating Systems 6

Resource Allocation Graph: Notation

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Andrew H. Fagg: Introduction to Operating Systems 7

Pi

Pi

Rj

Rj

Example: Resource Allocation Graph

• State:
• P1 has R2 and is waiting for R1

• P2 has R2 and is waiting for R3

• P3 has R3

• Assuming no other allocation
requests, can all of the processes
complete execution?

• Yes!
Andrew H. Fagg: Introduction to Operating Systems 8

Example 2: Resource Allocation Graph

• State:
• P1 has R2 and is waiting for R1
• P2 has R2 and is waiting for R3
• P3 has R3 and is waiting for R2

• Assuming no other allocation
requests, can all of the processes
complete execution?

• No! Everyone is waiting on
somebody else

Andrew H. Fagg: Introduction to Operating Systems 9

Example 3: Resource Allocation Graph

• State:
• P1 has R2 and is waiting for R1

• P2 has R1

• P3 has R1 and is waiting for R2

• P4 has R2

• Assuming no other allocation
requests, can all of the
processes complete execution?

• Yes!
Andrew H. Fagg: Introduction to Operating Systems 10

Deadlock

How do we know if we have a deadlock?

• If graph contains no cycles  no deadlock

• If graph contains a cycle 
• If only one instance per resource type, then deadlock

• If several instances per resource type, possibility of deadlock

Andrew H. Fagg: Introduction to Operating Systems 11

Dealing with Deadlocks

• Ensure that the system will never enter a deadlock
state:

• Deadlock prevention

• Deadlock avoidance

• Allow the system to enter a deadlock state and then
recover

• Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX

Andrew H. Fagg: Introduction to Operating Systems 12

Deadlock Prevention

Approach: we don’t allow one of the four necessary
conditions to hold

• Mutual Exclusion

• Hold and Wait

• No preemption

• Circular wait

Andrew H. Fagg: Introduction to Operating Systems 13

Deadlock Prevention

Mutual Exclusion

• Do not lock sharable resources (e.g., read-only files)

• But, this does not address non-sharable resources

Andrew H. Fagg: Introduction to Operating Systems 14

Deadlock Prevention

Hold and Wait

• Guarantee that whenever a process requests a resource, it

does not hold any other resources

• One approach: process must request all resources up front,

as a single unit

• Another approach: only allow a process to request

resources only when the process has none allocated to it

• Problems: Low resource utilization; starvation possible

Andrew H. Fagg: Introduction to Operating Systems 15

Deadlock Prevention

No Preemption:

• If a process that is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are released

• Preempted resources are added to the list of resources
for which the process is waiting

• Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

Andrew H. Fagg: Introduction to Operating Systems 16

Deadlock Prevention

Circular Wait

• Impose a total ordering of all resource types

• Require that each process requests resources in an
increasing order of enumeration

• Two processes cannot both block while waiting for
resources that are held by the opposite process

Andrew H. Fagg: Introduction to Operating Systems 17

Deadlock Example

Prevention:

• Could force total
ordering on the locks

• Could force one thread
to give up locks when
preempted

Andrew H. Fagg: Introduction to Operating Systems 18

/* thread one runs in this function */

void *do_work_one(void *param)

{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */

pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)

{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */

pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

Deadlock Example

Two different transactions execute
concurrently:

• Transaction 1 transfers $25 from
account A to account B, and

• Transaction 2 transfers $50 from
account B to account A

Prevention:

• Could have a total ordering of
accounts

• Could require all resources to be
allocated simultaneously

Andrew H. Fagg: Introduction to Operating Systems 19

void transaction(Account from,

Account to,

double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Deadlock Prevention

• Kernel can take preventative steps
• Resource utilization could be poor

• Or the application programmer can take explicit steps
• E.g., ordering of lock operations

• Dealing with preemption

• This approach relies on programmers doing the right
• Generally, this is a bad idea…

Andrew H. Fagg: Introduction to Operating Systems 20

Deadlock Avoidance

• Deadlock prevention techniques place a lot of
restrictions on what can be done

• In particular: allocation decisions are made using uniformly
applied rules

• Next approach (avoidance): dynamically make
allocation decisions on a case-by-case basis

• Only allow an allocation to proceed if there is no opportunity
in the current system for deadlock

Andrew H. Fagg: Introduction to Operating Systems 21

Deadlock Avoidance

Process Model:

• Each process must declare up front the maximum

number of resources of each type that it may need to

complete execution

• Then, during execution, the process may request that

resources as they are actually needed

• Must respect the declared needs at the start

Andrew H. Fagg: Introduction to Operating Systems 22

System State

Three possible situations:

• Deadlock: a circular wait has happened

• Safe: given the current allocations and the potential
allocation of the remaining needs, all processes can
complete without deadlock occurring

• Unsafe: deadlock has not occurred, but if the right set
of needs are requested, then deadlock will happen

Andrew H. Fagg: Introduction to Operating Systems 23

Safe State
• System is in safe state if there exists a sequence <P1, P2, …, Pn>

of ALL the executing processes such that:

• P1 can allocate its remaining needs from the available resources

• Each Pi can allocate its remaining needs from the available resources

plus those currently held by processes P1 … Pi-1

• That is:

• If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished (where j < i)

• Pi can then obtain the needed resources, execute, return allocated

resources, and terminate

• When Pi terminates, Pi +1 is guaranteed to be able to obtain its needed

resources, etc.

Andrew H. Fagg: Introduction to Operating Systems 24

System State

Three possible situations:

• Deadlock: a circular wait has
happened

• Safe: all processes can complete
without deadlock occurring

• Unsafe: deadlock has not
occurred, but if the right set of
needs are requested, then
deadlock will happen

Andrew H. Fagg: Introduction to Operating Systems 25

System Allocation Algorithm

• Goal: always stay in a safe state

• When a new request is made by a process:
• Kernel tests whether the new state will be safe or not

• If safe, then allocation is allowed

• If unsafe, then the process is placed in a waiting queue until
a safe state can be achieved

Andrew H. Fagg: Introduction to Operating Systems 26

Avoidance Algorithms

• All resources are single-instance:
• We can just look at the resource allocation graph to

determine whether a cycle can happen

• Multiple instances of some resources:
• Use the Banker’s Algorithm to determine safe vs unsafe

Andrew H. Fagg: Introduction to Operating Systems 27

Resource-Allocation Graph Scheme

• Claim edge Pi  Rj indicated that process Pi may request
resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process requests a
resource.

• Request edge: Pi  Rj solid line

• Request edge converted to an assignment edge when the
resource is allocated to the process

• Assignment edge: Rj Pi

• When a resource is released by a process, assignment edge
reconverts back to a claim edge

• All resources must be claimed before any allocation requests are
made

Andrew H. Fagg: Introduction to Operating Systems 28

Resource-Allocation Graph

• P1:
• Claimed: R2
• Assigned R1

• P2:
• Claimed: R2
• Requested: R1

Two independent questions:

• Should P1 be assigned R2?

• Should P2 be assigned R2?

Andrew H. Fagg: Introduction to Operating Systems 29

Resource-Allocation Graph

Assign R2 to P2:

• Now in an unsafe state!

• If P1 then requests R2, we
will have deadlock

Conclusion: we should not
assign R2 to P2 right now

Andrew H. Fagg: Introduction to Operating Systems 30

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj:

• The request can be granted only if converting the
request edge to an assignment edge does not result in
the formation of a cycle in the resource allocation graph

• If this is the case, then the process is placed into a
waiting queue

Andrew H. Fagg: Introduction to Operating Systems 31

Banker’s Algorithm

• Multiple instances of resources

• Each process must claim the maximum use of

resources before any requests can be made

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return

them and terminate in a finite amount of time

Andrew H. Fagg: Introduction to Operating Systems 32

Data Structures for the
Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

• Available: Vector of length m. If available [j] = k, there are k instances of

resource type Rj available to be allocated

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k

instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k

instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to

complete its task
Need [i,j] = Max[i,j] – Allocation [i,j]

Andrew H. Fagg: Introduction to Operating Systems 33

Banker’s Algorithm: Determining Safety
Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Otherwise, it is unsafe

Andrew H. Fagg: Introduction to Operating Systems 34

• Examples

Andrew H. Fagg: Introduction to Operating Systems 35

Using the Banker’s Algorithm

Requesti = request vector for process Pi. If Requesti [j] = k then process

Pi wants k instances of resource type Rj

1. If Requesti > Needi raise error condition, since process has exceeded its

maximum claim

2. If Requesti > Available, Pi must wait, since the resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as

follows:
Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is restored

Andrew H. Fagg: Introduction to Operating Systems 36

Banker’s Example III

Andrew H. Fagg: Introduction to Operating Systems 37
https://www.geeksforgeeks.org/bankers-algorithm-in-operating-system-2/

Banker’s Example IV

New request by Process 1: 1,0,2

• Will we be in a safe state?

Andrew H. Fagg: Introduction to Operating Systems 39

Deadlock Summary

Necessary conditions for deadlock (all must be true):

• Mutual Exclusion

• Hold and Wait

• No preemption

• Circular wait

Andrew H. Fagg: Introduction to Operating Systems 42

Deadlock Summary

Deadlock Prevention:

• Fixed set of rules that apply to all situations

• Remove one of the necessary conditions

• Simple

• But: can be overly conservative and may not give us
good use of the available resources

Andrew H. Fagg: Introduction to Operating Systems 43

Deadlock Summary

Deadlock Avoidance:

• Make context-specific decisions on the fly as to whether
an allocation request should be granted

• Single instance per resource type:
• Use allocation graph

• If an allocation results in a cycle, then do not grant it

• Multiple instances per resource type:
• Banker’s Algorithm

• If an allocation results in an unsafe state, then do not grant it

Andrew H. Fagg: Introduction to Operating Systems 44

