
The plan …

•

• A bit more about file descriptors

• Project 2 questions

• Exam preparation

• Threads

Andrew H. Fagg: Introduction to Operating Systems 1

File Descriptors
CS 3113

File Descriptors

• Integer that references a table inside of the kernel
memory space

• File Descriptor Table

• There is one table for each process

• Program provides the FD any time we make a system
call that is about accessing an open stream (could be a
file, pipe, etc)

Andrew H. Fagg: Introduction to Operating Systems 3

Representing Files Inside the Kernel

• Open File Table:
• Store information about how the files are being accessed

• File offset, status information

• Inode Table (for files):
• Store disk-level information about the file

• Location of the file on the disk, permissions, type of file, …

Andrew H. Fagg: Introduction to Operating Systems 4

Andrew H. Fagg: Introduction to Operating Systems 5

Representing Files Inside the Kernel

Key ideas:

• Multiple processes can share an entry in the open file
table

• Sharing happens through a fork()

• Shared file offset

• Multiple processes can open the same file
• Each has its own entry in the open file table

• Independent file offsets

Andrew H. Fagg: Introduction to Operating Systems 6

Duplicating File Descriptors

• In various cases, we have a need to copy the contents
of one File Descriptor Table entry to another entry

• This is particularly useful when we want to replace an
existing file descriptor with another

Andrew H. Fagg: Introduction to Operating Systems 7

Duplicating File Descriptors

// Open a named pipe

fd = open(“my_pipe”, O_WRONLY);

// Close the file descriptor that correspond to stdout

close(1);

// Copy the contents from the recently opened pipe to fd 1

dup2(fd, 1);

// Now, anything written to file descriptor 1 will be

// written to the named pipe!

Andrew H. Fagg: Introduction to Operating Systems 8

STDOUT

• The globally declared symbol stdout is a pointer to a
FILE structure

• What is in the FILE structure?

Andrew H. Fagg: Introduction to Operating Systems 9

STDOUT

What is in the FILE structure?

• A file descriptor associated with the FILE

• A buffer that stores (for the case of STDOUT) outgoing
data until it is needed or flushed. Flushes happen when

• Certain characters are written (e.g., ‘\n’)

• fflush(stdout) is called

• The buffer fills up

Andrew H. Fagg: Introduction to Operating Systems 10

FILE vs file descriptor (STDOUT)

• stdout maps to file descriptor 1

• So, anything written to FILE stdout, is then written to file
descriptor 1

• This includes: printf!
• printf(“Hello, World!\n”);

• fprintf(stdout, “Hello, World!\n”)

• By default (in our set up), STDOUT is routed to the
starting terminal

Andrew H. Fagg: Introduction to Operating Systems 11

Duplicating File Descriptors

// Open a named pipe

fd = open(“my_pipe”, O_WRONLY);

// Close the file descriptor that correspond to stdout

close(1);

// Copy the contents from the recently opened pipe to fd 1

dup2(fd, 1);

// Now, magic can happen

printf(“Hello, World!\n”) // Routed to the named pipe

Andrew H. Fagg: Introduction to Operating Systems 12

Duplicating File Descriptors

• Once the dup2() happens, your program does not even
realize that it is now talking to another entity (a named
pipe, in this case)

• Particularly useful when you want to generate output to
the terminal in some cases, but output to files or other
processes in other cases

Andrew H. Fagg: Introduction to Operating Systems 13

dup2 demo

Andrew H. Fagg: Introduction to Operating Systems 14

