The plan ...

A bit more about file descriptors
* Project 2 questions

« Exam preparation

* Threads



File Descriptors

CS 3113



File Descriptors

* Integer that references a table inside of the kernel
memory space

* File Descriptor Table
* There Is one table for each process

* Program provides the FD any time we make a system
call that Is about accessing an open stream (could be a
file, pipe, etc)



Representing Files Inside the Kernel

* Open File Table:
 Store information about how the files are being accessed
* File offset, status information

* Inode Table (for files):
 Store disk-level information about the file
 Location of the file on the disk, permissions, type of file, ...



fd0
fd 1
fd2

fd 20

fd0

fd I
fd 2

fd3

Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes

Process A
File descriptor table

fd
flags

file
ptr

/|

Process B
File descriptor table

fd
flags

file
ptr

NN

23

73

86

Open file table
(system-wide)

file
offset

status
flags

inode
ptr

224

1976

5139

I-node table
(system-wide)

file
type

file
locks




Representing Files Inside the Kernel

Key ideas:

* Multiple processes can share an entry in the open file
table

« Sharing happens through a fork()
« Shared file offset

* Multiple processes can open the same file
« Each has its own entry in the open file table
* Independent file offsets



Duplicating File Descriptors

* [n various cases, we have a need to copy the contents
of one File Descriptor Table entry to another entry

 This Is particularly useful when we want to replace an
existing file descriptor with another



Duplicating File Descriptors

// Open a named pipe

fd = open (“my pipe”, O WRONLY) ;

// Close the file descriptor that correspond to stdout
close(1l);

// Copy the contents from the recently opened pipe to fd 1
dup2 (fd, 1);

// Now, anything written to file descriptor 1 will be
// written to the named pipe!



STDOUT

* The globally declared symbol stdout Iis a pointer to a
FILE structure

 What is in the FILE structure?



STDOUT

What is in the FILE structure?
* A file descriptor associated with the FILE

* A buffer that stores (for the case of STDOUT) outgoing
data until it is needed or flushed. Flushes happen when
 Certain characters are written (e.g., \n’)
» fflush(stdout) is called
* The buffer fills up



FILE vs file descriptor (STDOUT)

* stdout maps to file descriptor 1

* S0, anything written to FILE stdout, is then written to file
descriptor 1

* This Includes: printf!
e printf("Hello, World\n”);
e fprintf(stdout, “Hello, World'\n")

By default (in our set up), STDOUT Is routed to the
starting terminal



Duplicating File Descriptors

// Open a named pipe
fd = open (“my pipe”, O WRONLY) ;
// Close the file descriptor that correspond to stdout

close(1l);
// Copy the contents from the recently opened pipe to fd 1

dup2 (£d, 1);

// Now, magic can happen
printf (“Hello, World!\n”) // Routed to the named pipe



Duplicating File Descriptors

* Once the dup2() happens, your program does not even
realize that it is now talking to another entity (a named
pipe, In this case)

 Particularly useful when you want to generate output to
the terminal in some cases, but output to files or other
processes in other cases



dup2 demo

Andrew H. Fagg: Introduction to Operating Systems

14



