
Thursday

• Career Fair: no COE classes

• Will hold office hours on Canvas during class time
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Today

• Last Project 0 questions

• Bit manipulation

• Project 1 introduction

• More library functions

• File Systems
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memset()

#include <string.h>

void *memset(void *s, int c, size_t n);

• Set the first n bytes in s to the value c

• Returns s

• Good for initializing buffers with a constant
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memcpy()

Low-level byte copy

#include <string.h>

void *memcpy(void *dest, const void *src, size_t n);

• Copy n bytes from src to dest
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scanf()
Parsing formatted input from STDIN

int i;

float f;

int ret = scanf(“%d %f”, &i, &f)

• Format string: same meaning as in printf()

• Fills in the values for i and f

• Returns the number of arguments that have been parsed.  
If this number does not match the number you expect, then 
something went wrong.
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sscanf()

Parsing formatted input from a character buffer

int i;

float f;

char buffer[200];   

// Buffer has been filled with a string

int ret = sscanf(buffer, “%d %f”, &i, &f)
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File Systems



Data Storage Challenges

For any storage system, we have to answer questions such as:

• How will new data be stored?  How do we select its location?

• When we want to retrieve data, how do we find this data and 
access it?

What matters:

• Efficiency in storage and access

• Integrity

• Volume of data

• Ease of access, even when faced with many different physical 
implementations
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The Type of Application Matters

Different applications have different requirements for 
storage:

• Data collection: quickly storing data when it arrives in 
big bursts

• Databases: often highly-structured data
• Rapid look-up by key (or multiple keys)

• Many other apps: semi-structured
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File Concept
• Contiguous, logical address space

• At the lowest level, each address just contains a byte of data

• At the more abstract side, files contain: 
• Data

• numeric

• character

• binary

• Program

• Contents defined by file’s creator
• Many types

• Consider text files, source files, executable files
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Low-Level Representation of a File 
(or a  Stream)

• Sequence of bytes

• Current position tells us where in the file we are 
currently at.  Formally called the file offset

• Sequential access: next read / write operation will access the 
file at this point and then advance the current position

• We can also programmatically change the current location
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File Attributes

Files have a set of attributes that describe the details of 
the file.  These attributes are stored with the file.

• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file 
system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size
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File Attributes

• Protection: controls who can do reading, writing, 
executing

• Time, date, and user identification: data for 
protection, security, and usage monitoring

• Information about files are kept in the directory 
structure, which is maintained on the disk

• Many variations, including extended file attributes such as 
file checksum
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File info Window on Mac OS X
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Standard File Operations
File is an abstract data type!

• Create

• Write: at write offset location

• Read: at read offset location

• Reposition within file: seek

• Delete

• Truncate

• Open(Fi) – search the directory structure on disk for entry 
Fi, and move the content of entry to memory

• Close (Fi) – move the content of entry Fi in memory to 
directory structure on disk
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Low-Level File/Stream Identification

File descriptor:

• A nonnegative integer that may refer to:
• Regular files, pipes, FIFOs, sockets, terminals or devices

• Each process has its own assigned set of file 
descriptors

• Used by the system to refer to files that are open
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Standard File Descriptors

• When a process starts executing, it is generally given 
three standard file descriptors that are already open

• This includes programs that are started by your shell

• Standard In: input into the process.  Bytes are received 
through functions such as getchar() or scanf()

• Standard Out: default output from the process.  puts(), 
printf()

• Standard Error: separate output for error information 
only.  fputs(), fprintf()
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Key Low-Level I/O System Calls

• opens the file identified by pathname, 
returning a file descriptor. 

• reads at most count bytes from the open 
file referred to by fd and stores them in 
buffer. 

• writes up to count bytes from buffer to 
the open file referred to by fd.

• is called after all I/O has been 
completed, in order to release the file 
descriptor fd and its associated kernel 
resources. 

Andrew H. Fagg: Introduction to Operating Systems 18



Open

Opens the file identified by pathname, returning a file 
descriptor.
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Open
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File Permissions: Can Be Or’ed Together

Read Write Execute

Owner/User S_IRUSR S_IWUSR S_IXUSR 

Group S_IRGRP S_IWGRP S_IXGRP 

Others S_IROTH S_IWOTH S_IXOTH 
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A Note

• errExit() in the previous example is not a standard 
function

• Instead, use the following:

perror(“some string to describe your context”);

exit(-1);

• This will print out your message, a description of the 
error that occurred in the last system call and then  
terminate your program
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Read

Reads at most count bytes from the open file referred to 
by fd and stores them in buffer.
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Read
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Read
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Write

Writes up to count bytes from buffer to the open file 
referred to by fd.
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Close

Called after all I/O has been completed, in order to 
release the file descriptor fd and its associated kernel 
resources.
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File Offset

• Also called read/write offset or pointer

• The kernel records a file offset for each open file.

• The file offset is set to point to the start of the file (0) 
when the file is opened and is automatically adjusted by 
each subsequent call to read() or write() 
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File Access

• Sequential Access: 
• Start at beginning of file

• Each read/write of a byte from/to the file advances the file 
offset by one

• Direct Access (or Random Access):
• Before a read/write operation, move the offset to the right 

point in the file
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Seeking

Change the file offset for the specified file

Andrew H. Fagg: Introduction to Operating Systems 30



lseek() Examples
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Fundamental challenge: how do we find the file that we 
are looking for?

Directory Structures
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Directory: 

• Container for a set of files

• Stores meta-information about the files

Directory 
Structures
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Directory Organization

The directory is organized logically to obtain:

• Efficiency: locating a file quickly

• Naming: convenient to users
• Two users can have same name for different files

• The same file can have several different names

• Grouping: logical grouping of files by properties, (e.g., 
all Java programs, all games, …)
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Single-Level Directory

A single directory for all users

• Problems: does not support naming and grouping
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Two-Level Directory

Separate directory for each user

• Path name

• Can have the same file name for different user

• Efficient searching

• No grouping capability
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Tree-Structured Directories
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Tree-Structured Directories

• Efficient searching

• Grouping capability

• Efficient use:
• Each process has a notion of a current working directory
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Tree-Structured Directories
• Absolute or relative path name

• Default behavior: creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example:  if in current directory   /mail
mkdir count

• Deleting “mail” deleting the entire subtree rooted by “mail”
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Acyclic-Graph Directories

• Circles: files

• Rectangles: directories

• The same file can be 
contained within 
multiple directories
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Acyclic-Graph Directories

• Two different names (aliasing)

• If dict deletes count  dangling pointer

Solutions:
• Backpointers, so we can delete all pointers

Variable size records a problem

• Backpointers using a daisy chain organization

• Entry-hold-count solution

• New directory entry type
• Link – another name (pointer) to an existing file

• Resolve the link – follow pointer to locate the file
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General Graph Directory

Andrew H. Fagg: Introduction to Operating Systems 44



General Graph Directory

How do we guarantee no cycles?

• Allow only links to files, not subdirectories

• Every time a new link is added use a cycle detection 
algorithm to determine whether it is OK
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File/Directory Protection

• File owner/creator should be able to control:
• what can be done

• by whom

• Common types of access
• Read

• Write

• Execute

• Append

• Delete

• List
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Access Lists and Groups
• Common modes of access:  read, write, execute

• Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0
RWX

c) public access 1  0 0 1

• Ask manager to create a group (unique name), say G, and 
add some users to the group.

• For a particular file (say game) or subdirectory, define an 
appropriate access.
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A Sample UNIX Directory Listing
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Another Look at Files

File descriptors + open/close/read/write: a low-level 
mechanism for representing and operating on a file (or 
stream)

• Every write is immediate: all written data are sent to the 
file

• This can be problematic if we are calling write() for individual 
bytes

• Limited support for formatting of data (especially for 
translating raw data into strings of characters)
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STDIO Library

The STDIO library adds another level of abstraction

• In-memory buffering for read/write operations

• API is more user-friendly

• Higher-level mechanisms for performing formatted I/O
• printf(), fprintf(), sprint()

• scanf(), fscanf(), sscanf()

• fopen()

• fclose()

• fflush()
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File Descriptors vs File Pointers

• File descriptor: 
• int type that references a table of open streams

• Can reference files, pipes or sockets (more on the middle soon; 
latter is for inter-process communication)

• Access through system calls: open(), read(), write(), close() …

• File pointer
• FILE type defined in stdio.h (it is a struct)

• Includes the file descriptor, but adds buffering and other features

• Access through the stdio library: fopen(), fread(), fwrite(), fclose(), 
fprintf(), fscanf()

• When working with files, this is the preferred interface
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File Pointer Example

#include <stdio.h>

int main(int argc, char** argv)

{

FILE* fp = fopen(argv[1], "w");

if(fp == NULL){

printf("Error opening file.\n");

}else{

fprintf(fp, "Foo bar: %s\n", argv[1]);

fclose(fp);

}

}
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Another File Open Function …

FILE *freopen(const char *path, const char *mode, FILE *stream);

• Opens the specified file and associates it with the 
<stream> FILE

• If <stream> is already an open file, then it is closed first

• Returns <stream> if successful

Useful for substituting a file for the stdin stream
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Flushing Streams

• Because FILE streams are buffered, a fprintf() 
does not necessarily affect the file immediately

• Instead, the bytes are dropped into a buffer; at some 
point the library will decide to move the bytes from the  
buffer to the file

• fflush(fp) will immediately force all bytes in the 
buffer to the file
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Good Practices

• Generally, you should not mix use of file descriptors and 
file pointers (FILE*)

• Since file pointers do buffering, things written to the 
corresponding file descriptor directly can “jump” ahead of 
things written to the file poiner

• It can be stochastic as to which arrives first

• Instead, you should stick with only one for most of your 
work

• fdopen() will wrap a FILE around a file descriptor
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Note: stick with file descriptors for our projects

i.e., open/close/read/write/lseek
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