Thursday

» Career Fair: no COE classes
* Will hold office hours on Canvas during class time

Today

 Last Project O questions
* Bit manipulation

* Project 1 introduction

* More library functions

* File Systems

memset()

#include <string.h>

vold *memset (void *s, 1nt ¢, size t n);

 Set the first n bytes in s to the value ¢
* Returns s

* Good for Iinitializing buffers with a constant

memcpy()

Low-level byte copy

#include <string.h>

vold *memcpy(void *dest, const void *src, size t n);

* Copy n bytes from src to dest

scanf()
Parsing formatted input from STDIN

int 1;
float £;
int ret = scanf(V“%d %f”, &1, &f)

* Format string: same meaning as in printf()
* Fills in the values for 1 and f

* Returns the number of arguments that have been parsed.
f this number does not match the number you expect, then
something went wrong.

sscanf()

Parsing formatted input from a character buffer

int 1;
float f;
char buffer[200];

// Buffer has been filled with a string

int ret = sscanf (buffer, “3d %f£”, &1, &f)

File Systems

Data Storage Challenges

For any storage system, we have to answer guestions such as:
* How will new data be stored? How do we select its location?

* When we want to retrieve data, how do we find this data and
access It?

What matters:

» Efficiency in storage and access
* Integrity

* VVolume of data

* Ease of access, even when faced with many different physical
Implementations

The Type of Application Matters

Different applications have different requirements for
storage:

 Data collection: quickly storing data when it arrives in
big bursts

« Databases: often highly-structured data
« Rapid look-up by key (or multiple keys)
* Many other apps: semi-structured

File Concept

» Contiguous, logical address space
At the lowest level, each address just contains a byte of data

* At the more abstract side, files contain:

* Data
e nUMeric
 character
* binary
* Program
» Contents defined by file's creator

* Many types
» Consider text files, source files, executable files

Low-Level Representation of a File
(or a Stream)

* Sequence of bytes

 Current position tells us where In the file we are
currently at. Formally called the file offset

« Sequential access: next read / write operation will access the
file at this point and then advance the current position

* We can also programmatically change the current location

current position

beginning end

mmmm c\Vind

—read or write =)

File Attributes

Files have a set of attributes that describe the detalls of
the file. These attributes are stored with the file.

* Name — only information kept in human-readable form

* |dentifier — unique tag (number) identifies file within file
system

* Type — needed for systems that support different types
* Location — pointer to file location on device
» Size — current file size

File Attributes

* Protection: controls who can do reading, writing,
executing

* Time, date, and user identification: data for
protection, security, and usage monitoring

* Information about files are kept in the directory
structure, which i1s maintained on the disk

« Many variations, including extended file attributes such as
file checksum

1l.tex 111 K8
.4 Modified: Today 2:00 PM

» Spotlight Comments

File iInfo Window on Mac OS X "G

Where: /Users/greg/Dropbox/osc9e/tex
Created: Today 1:46 PM
Modified: Today 2:00 PM

—

Label: x B WL veew

(_] Stationery pad
(") Locked

¥ More Info:
Last opened: Today 1:47 PM

¥ Name & Extension:

!ll.tex

(] Hide extension

¥ Open with:
| "EX texmaker : |
Use this application to open all documents
like this one.
Change All...
P Preview:
¥ Sharing & Permissions:
You can read and write
[Name | Privilege
A greg Me) % Read & Write
A staff + Read only
- everyone + No Access

Andrew H. Fagg: Introduction to Operating Systems

Standard File Operations

File Is an abstract data type!

* Create

* Write: at write offset location
 Read: at read offset location
* Reposition within file: seek
* Delete

 Truncate

* Open(F;) — search the directory structure on disk for entry
F., and move the content of entry to memory

* Close (F;) — move the content of entry F; in memory to
directory structure on disk

Low-Level File/Stream ldentification

File descriptor:

* A nonnegative integer that may refer to:
* Reqgular files, pipes, FIFOs, sockets, terminals or devices

* Each process has its own assigned set of file
descriptors

» Used by the system to refer to files that are open

Standard File Descriptors

* When a process starts executing, it is generally given
three standard file descriptors that are already open
 This includes programs that are started by your shell

« Standard In: input into the process. Bytes are received
through functions such as getchar() or scanf()

» Standard Out: default output from the process. puts(),
printf()
» Standard Error: separate output for error information

on Iy fp uts ()) fp [l ntf() File descriptor | Purpose POSIX name | stdio stream
0 standard input | STDIN_FILENO | stdin
1 standard output | STDOUT_FILENO | stdout
2 standard error | STDERR _FILENO | stderr

Key Low-Level I/O System Calls

fd = open(pathname, flags, mode) * Opens the file identified by pathname,
returning a file descriptor.

numread = read(fd, buffer, county * Y€AAS @t Most count bytes from the open
| file referred to by fd and stores them In
buffer.

numwritten = write(fd, buffer, count) * WINt€S UP 10 count bytes from buffer to
the open file referred to by fd.

status = close(fd) * Is called after all I/O has been |
completed, in order to release the file
descriptor fd and its associated kernel
resources.

Open

Opens the file identified by pathname, returning a file
descriptor.

#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, ... /* mode_t mode */);

Returns file descriptor on success, or =1 on error

Andrew H. Fagg: Introduction to Operating Systems 19

Open

Listing 4-2: Examples of the use of open()

/* Open existing file for reading */

fd = open("startup", O RDONLY);
if (fd == -1)
errExit("open");

/* Open new or existing file for reading and writing, truncating to zero
bytes; file permissions read+write for owner, nothing for all others */

fd = open("myfile", O RDWR | O CREAT | O TRUNC, S IRUSR | S IWUSR);
if (fd == -1)
errExit("open");

/* Open new or existing file for writing; writes should always
append to end of file */

fd = open("w.log", O WRONLY | O CREAT | muSSSSSSll O APPEND,
S_IRUSR | S_IWUSR);
if (fd == -1)
errExit("open");

Flag Purpose

0_RDONLY Open for reading only

0_WRONLY Open for writing only

0_RDWR Open for reading and writing

0_CLOEXEC Set the close-on-exec flag (since Linux 2.6.23)

0_CREAT Create file if it doesn’t already exist

0_DIRECT File /O bypasses buffer cache

0_DIRECTORY | Fail if pathname is not a directory

0_EXCL With 0_CREAT: create file exclusively

0_LARGEFILE | Used on 32-bit systems to open large files

0_NOATIME Don’t update file last access time on read() (since Linux 2.6.8)
0_NOCTTY Don’t let pathname become the controlling terminal
0_NOFOLLOW | Don’t dereference symbolic links

0_TRUNC Truncate existing file to zero length

0_APPEND Writes are always appended to end of file

0_ASYNC Generate a signal when 1/0 is possible

0_DSYNC Provide synchronized I/0O data integrity (since Linux 2.6.33)
0_NONBLOCK | Open in nonblocking mode

0_SYNC Make file writes synchronous

Andrew H. Fagg: Introduction to Operating Systems

20

File Permissions: Can Be Or’ed Together

Read Write Execute
Owner/User S IRUSR S _IWUSR S_IXUSR
Group S _IRGRP S IWGRP S_IXGRP

Others S_IROTH S_IWOTH S _IXOTH

A Note

* errExit() in the previous example is not a standard
function
* Instead, use the following:

perror (“some string to describe your context”);
ex1it (-1);

* This will print out your message, a description of the
error that occurred in the last system call and then
terminate your program

Read

Reads at most count bytes from the open file referred to
by fd and stores them in buffer.

#include <unistd.h>

ssize t read(int fd, void *buffer, size t count);

Returns number of bytes read, 0 on EOF, or -1 on error

Andrew H. Fagg: Introduction to Operating Systems 23

Read

#define MAX READ 20
char buffer[MAX READ];

if (read(STDIN FILENO, buffer, MAX READ) == -1)
errExit("read");
printf("The input data was: %s\n", buffer);

#include <unistd.h>

ssize t read(int fd, void *buffer, size t count);

Returns number of bytes read, 0 on EOF, or -1 on error

Read

char buffer[MAX READ + 1];
ssize t numRead;

numRead = read(STDIN FILENO, buffer, MAX READ);
if (numRead == -1)
errExit("read");

buffer[numRead] = '\0';
printf("The input data was: %s\n", buffer);

#include <unistd.h>

ssize t read(int fd, void *buffer, size t count);

Returns number of bytes read, 0 on EOF, or -1 on error

Write

Writes up to count bytes from buffer to the open file
referred to by fd.

#include <unistd.h>

ssize t write(int fd, void *buffer, size t count);

Returns number of bytes written, or =1 on error

Andrew H. Fagg: Introduction to Operating Systems 26

Close

Called after all I/O has been completed, in order to
release the file descriptor fd and its associated kernel
resources.

#include <unistd.h>

int close(int /d);

Returns 0 on success, or =1 on error

Andrew H. Fagg: Introduction to Operating Systems 27

File Offset

* Also called read/write offset or pointer

* The kernel records a file offset for each open file.

* The file offset Is set to point to the start of the file (0)
when the file is opened and is automatically adjusted by
each subsequent call to read() or write()

File Access

» Sequential Access:
o Start at beginning of file
« Each read/write of a byte from/to the file advances the file

offset by one
* Direct Access (or Random Access):

» Before a read/write operation, move the offset to the right
point in the file

Seeking

Change the file offset for the specified file

#include <unistd.h>

off_t 1seek(int fd, off_t offset, int whence);

Returns new file offset if successful, or =1 on error

File containing Unwritten bytes
; LE h_ _*_ 4
N bytes of data past EOF
byte ' il s it
¥ _slo [1] IN=2[N-1| N N+1,
number S G
Current
[ile offset
o4 ____L__ - -
| SEEK SET SEEK_CUR SEEK_END |

| whence value '

Figure 4-1: Interpreting the whence argument of Iseek()

Iseek() Examples

lseek(fd, @, SEEK_CUR); /* Returns current cursor loc of without change */
lseek(fd, @, SEEK_SET); /* Start of file */

lseek(fd, @, SEEK_END); /* Next byte after the end of the file */
lseek(fd, -1, SEEK_END); /* Last byte of file */

lseek(fd, -1@0, SEEK_CUR); /* Ten bytes prior to current location */
lseek(fd, 10000, SEEK_END); /* 10001 bytes past last byte of file */

Andrew H. Fagg: Introduction to Operating Systems 31

Andrew H. Fagg: Introduction to Operating Systems

33

Directory Structures

Fundamental challenge: how do we find the file that we
are looking for?

Directory
Structures

Files

Directory:
 Container for a set of files

* Stores meta-information about the files

\

e (OO OO 2

\

F1

F 2

F3

F4

FD

Directory Organization

The directory Is organized logically to obtain:
* Efficiency: locating a file quickly
* Naming: convenient to users

 Two users can have same name for different files
* The same file can have several different names

» Grouping: logical grouping of files by properties, (e.g.,
all Java programs, all games, ...)

Single-Level Directory

A single directory for all users

directory cat] bo] a] tes] data] maﬂ congl he)]recor]

L6068060806068

* Problems: does not support naming and grouping

Andrew H. Fagg: Introduction to Operating Systems 37

Two-Level Directory

Separate directory for each user

master file

directory ’ user 1 ’ userZ‘ user3’ user4‘

user file

diFS6tS test data test data

» Path name $$$$$$$$$$$

 Can have the same file name for different user
» Efficient searching
* No grouping capability

Andrew H. Fagg: Introduction to Operating Systems 38

Tree-Structured Directories

root

spelf

bin |pmgram

stat | mail | dist

e mail

prog

5\5555@/

0

NN 668 [

565646

Tree-Structured Directories

* Efficient searching
« Grouping capability

* Efficient use:
« Each process has a notion of a current working directory

Tree-Structured Directories

* Absolute or relative path name
» Default behavior: creating a new file is done in current directory
* Delete a file

rm <file-name>

* Creating a new subdirectory Is done In current directory
mkdir <dir-name>
Example: if in current directory /mail mail
mkdir count

prog | copy | prt |exp|count

 Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

dict

* Circles: files
» Rectangles: directories

* The same file can be
contained within
multiple directories

Andrew H. Fagg:

I

root

spelf

list

all

w

count

5

N

count

words

list

e

l

—» [ist

rade

Lok

Acyclic-Graph Directories

root dict

» Two different names (aliasing)
o If dict deletes count = dangling pointer
Solutions:

 Back
Varia

 Back

pointers, so we can delete all pointers
nle size records a problem

 Entry-hold-count solution
* New directory entry type

 Link — another name (pointer) to an existing file
» Resolve the link — follow pointer to locate the file

spell

—

fist

alf

w

count

5

pointers using a daisy chain organization

N

count

words

fist

~

Y

» fist

rade

w7

300

General Graph Directory

root avi tc jim
text | mail | count| book book | mail |unhex| hyp
avi | count unhex| hex

&

¥ o .

General Graph Directory

How do we guarantee no cycles?
* Allow only links to files, not subdirectories

* Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

File/Directory Protection

* File owner/creator should be able to control:
 what can be done
* by whom

« Common types of access
* Read
* Write
« Execute
* Append
* Delete
 List

Access Lists and Groups

« Common modes of access: read, write, execute
e Three classes of users on Unix / LiInux

RWX
a)owneraccess/ = 111
RWX
b) group access 6 = 110
RWX

c) public access 1 = 001

* Ask manager to create a group (unigue name), say G, and
add some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

owner dgroup public

N |

chmod 761 game

C

d

A Sample UNIX Directory Listing

TWXTWXTI-X

C

TWXTIWX---

-TW-I--T--
-TWXTI-XT-X

C

d

TWX--X--X

C

TWXTWXTWX

S . O, T, T, 0. TS O

[~ e

08
Og
D8
Og
Dg
D8
Og
Dg

DE

staft 31200
staft 512
staft 512
student 512
staff 0423
staft 20471
faculty 512
staft 1024
staft 512

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2003
Feb 24 2003
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

Andrew H. Fagg: Introduction to Operating Systems

INtro.ps
private/

doc/
student-proyj/
program.c
program

lib/

mail/

test/

49

Andrew H. Fagg: Introduction to Operating Systems

50

Another Look at Files

File descriptors + open/close/read/write: a low-level
mechanism for representing and operating on a file (or
stream)

* Every write Is iImmediate: all written data are sent to the
file
* This can be problematic if we are calling write() for individual
bytes
 Limited support for formatting of data (especially for
translating raw data into strings of characters)

STDIO Library

The STDIO library adds another level of abstraction
* In-memory buffering for read/write operations

* APl Is more user-friendly

* Higher-level mechanisms for performing formatted 1/O
* printf(), fprintf(), sprint()
« scanf(), fscanf(), sscanf()
* fopen()
« fclose()
* fflush()

File Descriptors vs File Pointers

* File descriptor:
* Int type that references a table of open streams

» Can reference files, pipes or sockets (more on the middle soon;
latter Is for inter-process communication)

» Access through system calls: open(), read(), write(), close() ...

* File pointer
* FILE type defined in stdio.h (it is a struct)
* Includes the file descriptor, but adds buffering and other features

« Access through the stdio library: fopen(), fread(), fwrite(), fclose(),
fprintf(), fscanf()

* When working with files, this is the preferred interface

File Pointer Example

#include <stdio.h>

int main(int argc, char** argv)
{
FILE* fp = fopen(argv[1l], "w");
if (fp == NULL) {
printf ("Error opening file.\n");
telse
fprintf (fp, "Foo bar: %s\n", argvi[l]);
fclose (fp) ;

Another File Open Function ...

FILE *freopen(const char *path, const char *mode, FILE *stream);

* Opens the specified file and associates it with the
<stream> FILE

* |f <stream> Is already an open file, then it is closed first
* Returns <stream> if successful

Useful for substituting a file for the stdin stream

Flushing Streams

* Because FILE streams are buffered, a fprintf ()
does not necessarily affect the file iImmediately

* Instead, the bytes are dropped into a buffer; at some
point the library will decide to move the bytes from the
buffer to the file

« fflush (fp) will immediately force all bytes in the
buffer to the file

Good Practices

* Generally, you should not mix use of file descriptors and
file pointers (FILE*)
« Since file pointers do buffering, things written to the

corresponding file descriptor directly can “jump” ahead of
things written to the file poiner

[t can be stochastic as to which arrives first

* Instead, you should stick with only one for most of your
work

« fdopen() will wrap a FILE around a file descriptor

Note: stick with file descriptors for our projects
l.e., open/close/read/write/lseek

Andrew H. Fagg: Introduction to Operating Systems

62

Andrew H. Fagg: Introduction to Operating Systems

63

