
Thursday

• Career Fair: no COE classes

• Will hold office hours on Canvas during class time

Andrew H. Fagg: Introduction to Operating Systems 1

Today

• Last Project 0 questions

• Bit manipulation

• Project 1 introduction

• More library functions

• File Systems

Andrew H. Fagg: Introduction to Operating Systems 2

memset()

#include <string.h>

void *memset(void *s, int c, size_t n);

• Set the first n bytes in s to the value c

• Returns s

• Good for initializing buffers with a constant
Andrew H. Fagg: Introduction to Operating Systems 3

memcpy()

Low-level byte copy

#include <string.h>

void *memcpy(void *dest, const void *src, size_t n);

• Copy n bytes from src to dest

Andrew H. Fagg: Introduction to Operating Systems 4

scanf()
Parsing formatted input from STDIN

int i;

float f;

int ret = scanf(“%d %f”, &i, &f)

• Format string: same meaning as in printf()

• Fills in the values for i and f

• Returns the number of arguments that have been parsed.
If this number does not match the number you expect, then
something went wrong.

Andrew H. Fagg: Introduction to Operating Systems 5

sscanf()

Parsing formatted input from a character buffer

int i;

float f;

char buffer[200];

// Buffer has been filled with a string

int ret = sscanf(buffer, “%d %f”, &i, &f)

Andrew H. Fagg: Introduction to Operating Systems 6

File Systems

Data Storage Challenges

For any storage system, we have to answer questions such as:

• How will new data be stored? How do we select its location?

• When we want to retrieve data, how do we find this data and
access it?

What matters:

• Efficiency in storage and access

• Integrity

• Volume of data

• Ease of access, even when faced with many different physical
implementations

Andrew H. Fagg: Introduction to Operating Systems 8

The Type of Application Matters

Different applications have different requirements for
storage:

• Data collection: quickly storing data when it arrives in
big bursts

• Databases: often highly-structured data
• Rapid look-up by key (or multiple keys)

• Many other apps: semi-structured

Andrew H. Fagg: Introduction to Operating Systems 9

File Concept
• Contiguous, logical address space

• At the lowest level, each address just contains a byte of data

• At the more abstract side, files contain:
• Data

• numeric

• character

• binary

• Program

• Contents defined by file’s creator
• Many types

• Consider text files, source files, executable files
Andrew H. Fagg: Introduction to Operating Systems 10

Low-Level Representation of a File
(or a Stream)

• Sequence of bytes

• Current position tells us where in the file we are
currently at. Formally called the file offset

• Sequential access: next read / write operation will access the
file at this point and then advance the current position

• We can also programmatically change the current location

Andrew H. Fagg: Introduction to Operating Systems 11

File Attributes

Files have a set of attributes that describe the details of
the file. These attributes are stored with the file.

• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file
system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

Andrew H. Fagg: Introduction to Operating Systems 12

File Attributes

• Protection: controls who can do reading, writing,
executing

• Time, date, and user identification: data for
protection, security, and usage monitoring

• Information about files are kept in the directory
structure, which is maintained on the disk

• Many variations, including extended file attributes such as
file checksum

Andrew H. Fagg: Introduction to Operating Systems 13

File info Window on Mac OS X

Andrew H. Fagg: Introduction to Operating Systems 14

Standard File Operations
File is an abstract data type!

• Create

• Write: at write offset location

• Read: at read offset location

• Reposition within file: seek

• Delete

• Truncate

• Open(Fi) – search the directory structure on disk for entry
Fi, and move the content of entry to memory

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk

Andrew H. Fagg: Introduction to Operating Systems 15

Low-Level File/Stream Identification

File descriptor:

• A nonnegative integer that may refer to:
• Regular files, pipes, FIFOs, sockets, terminals or devices

• Each process has its own assigned set of file
descriptors

• Used by the system to refer to files that are open

Andrew H. Fagg: Introduction to Operating Systems 16

Standard File Descriptors

• When a process starts executing, it is generally given
three standard file descriptors that are already open

• This includes programs that are started by your shell

• Standard In: input into the process. Bytes are received
through functions such as getchar() or scanf()

• Standard Out: default output from the process. puts(),
printf()

• Standard Error: separate output for error information
only. fputs(), fprintf()

Andrew H. Fagg: Introduction to Operating Systems 17

Key Low-Level I/O System Calls

• opens the file identified by pathname,
returning a file descriptor.

• reads at most count bytes from the open
file referred to by fd and stores them in
buffer.

• writes up to count bytes from buffer to
the open file referred to by fd.

• is called after all I/O has been
completed, in order to release the file
descriptor fd and its associated kernel
resources.

Andrew H. Fagg: Introduction to Operating Systems 18

Open

Opens the file identified by pathname, returning a file
descriptor.

Andrew H. Fagg: Introduction to Operating Systems 19

Open

Andrew H. Fagg: Introduction to Operating Systems 20

File Permissions: Can Be Or’ed Together

Read Write Execute

Owner/User S_IRUSR S_IWUSR S_IXUSR

Group S_IRGRP S_IWGRP S_IXGRP

Others S_IROTH S_IWOTH S_IXOTH

Andrew H. Fagg: Introduction to Operating Systems 21

A Note

• errExit() in the previous example is not a standard
function

• Instead, use the following:

perror(“some string to describe your context”);

exit(-1);

• This will print out your message, a description of the
error that occurred in the last system call and then
terminate your program

Andrew H. Fagg: Introduction to Operating Systems 22

Read

Reads at most count bytes from the open file referred to
by fd and stores them in buffer.

Andrew H. Fagg: Introduction to Operating Systems 23

Read

Andrew H. Fagg: Introduction to Operating Systems 24

Read

Andrew H. Fagg: Introduction to Operating Systems 25

Write

Writes up to count bytes from buffer to the open file
referred to by fd.

Andrew H. Fagg: Introduction to Operating Systems 26

Close

Called after all I/O has been completed, in order to
release the file descriptor fd and its associated kernel
resources.

Andrew H. Fagg: Introduction to Operating Systems 27

File Offset

• Also called read/write offset or pointer

• The kernel records a file offset for each open file.

• The file offset is set to point to the start of the file (0)
when the file is opened and is automatically adjusted by
each subsequent call to read() or write()

Andrew H. Fagg: Introduction to Operating Systems 28

File Access

• Sequential Access:
• Start at beginning of file

• Each read/write of a byte from/to the file advances the file
offset by one

• Direct Access (or Random Access):
• Before a read/write operation, move the offset to the right

point in the file

Andrew H. Fagg: Introduction to Operating Systems 29

Seeking

Change the file offset for the specified file

Andrew H. Fagg: Introduction to Operating Systems 30

lseek() Examples

Andrew H. Fagg: Introduction to Operating Systems 31

Andrew H. Fagg: Introduction to Operating Systems 33

Fundamental challenge: how do we find the file that we
are looking for?

Directory Structures

Andrew H. Fagg: Introduction to Operating Systems 34

Directory:

• Container for a set of files

• Stores meta-information about the files

Directory
Structures

Andrew H. Fagg: Introduction to Operating Systems 35

F 1 F 2
F 3

F 4

F n

Directory

Files

Directory Organization

The directory is organized logically to obtain:

• Efficiency: locating a file quickly

• Naming: convenient to users
• Two users can have same name for different files

• The same file can have several different names

• Grouping: logical grouping of files by properties, (e.g.,
all Java programs, all games, …)

Andrew H. Fagg: Introduction to Operating Systems 36

Single-Level Directory

A single directory for all users

• Problems: does not support naming and grouping

Andrew H. Fagg: Introduction to Operating Systems 37

Two-Level Directory

Separate directory for each user

• Path name

• Can have the same file name for different user

• Efficient searching

• No grouping capability

Andrew H. Fagg: Introduction to Operating Systems 38

Tree-Structured Directories

Andrew H. Fagg: Introduction to Operating Systems 39

Tree-Structured Directories

• Efficient searching

• Grouping capability

• Efficient use:
• Each process has a notion of a current working directory

Andrew H. Fagg: Introduction to Operating Systems 40

Tree-Structured Directories
• Absolute or relative path name

• Default behavior: creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

• Deleting “mail” deleting the entire subtree rooted by “mail”
Andrew H. Fagg: Introduction to Operating Systems 41

Acyclic-Graph Directories

• Circles: files

• Rectangles: directories

• The same file can be
contained within
multiple directories

Andrew H. Fagg: Introduction to Operating Systems 42

Acyclic-Graph Directories

• Two different names (aliasing)

• If dict deletes count  dangling pointer

Solutions:
• Backpointers, so we can delete all pointers

Variable size records a problem

• Backpointers using a daisy chain organization

• Entry-hold-count solution

• New directory entry type
• Link – another name (pointer) to an existing file

• Resolve the link – follow pointer to locate the file
Andrew H. Fagg: Introduction to Operating Systems 43

General Graph Directory

Andrew H. Fagg: Introduction to Operating Systems 44

General Graph Directory

How do we guarantee no cycles?

• Allow only links to files, not subdirectories

• Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

Andrew H. Fagg: Introduction to Operating Systems 45

File/Directory Protection

• File owner/creator should be able to control:
• what can be done

• by whom

• Common types of access
• Read

• Write

• Execute

• Append

• Delete

• List
Andrew H. Fagg: Introduction to Operating Systems 47

Access Lists and Groups
• Common modes of access: read, write, execute

• Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0
RWX

c) public access 1  0 0 1

• Ask manager to create a group (unique name), say G, and
add some users to the group.

• For a particular file (say game) or subdirectory, define an
appropriate access.

Andrew H. Fagg: Introduction to Operating Systems 48

A Sample UNIX Directory Listing

Andrew H. Fagg: Introduction to Operating Systems 49

Andrew H. Fagg: Introduction to Operating Systems 50

Another Look at Files

File descriptors + open/close/read/write: a low-level
mechanism for representing and operating on a file (or
stream)

• Every write is immediate: all written data are sent to the
file

• This can be problematic if we are calling write() for individual
bytes

• Limited support for formatting of data (especially for
translating raw data into strings of characters)

Andrew H. Fagg: Introduction to Operating Systems 51

STDIO Library

The STDIO library adds another level of abstraction

• In-memory buffering for read/write operations

• API is more user-friendly

• Higher-level mechanisms for performing formatted I/O
• printf(), fprintf(), sprint()

• scanf(), fscanf(), sscanf()

• fopen()

• fclose()

• fflush()

Andrew H. Fagg: Introduction to Operating Systems 52

File Descriptors vs File Pointers

• File descriptor:
• int type that references a table of open streams

• Can reference files, pipes or sockets (more on the middle soon;
latter is for inter-process communication)

• Access through system calls: open(), read(), write(), close() …

• File pointer
• FILE type defined in stdio.h (it is a struct)

• Includes the file descriptor, but adds buffering and other features

• Access through the stdio library: fopen(), fread(), fwrite(), fclose(),
fprintf(), fscanf()

• When working with files, this is the preferred interface
CG and AHF: Introduction to Operating Systems

File Pointer Example

#include <stdio.h>

int main(int argc, char** argv)

{

FILE* fp = fopen(argv[1], "w");

if(fp == NULL){

printf("Error opening file.\n");

}else{

fprintf(fp, "Foo bar: %s\n", argv[1]);

fclose(fp);

}

}
CG and AHF: Introduction to Operating Systems

Another File Open Function …

FILE *freopen(const char *path, const char *mode, FILE *stream);

• Opens the specified file and associates it with the
<stream> FILE

• If <stream> is already an open file, then it is closed first

• Returns <stream> if successful

Useful for substituting a file for the stdin stream

CG and AHF: Introduction to Operating Systems

Flushing Streams

• Because FILE streams are buffered, a fprintf()
does not necessarily affect the file immediately

• Instead, the bytes are dropped into a buffer; at some
point the library will decide to move the bytes from the
buffer to the file

• fflush(fp) will immediately force all bytes in the
buffer to the file

CG and AHF: Introduction to Operating Systems

Good Practices

• Generally, you should not mix use of file descriptors and
file pointers (FILE*)

• Since file pointers do buffering, things written to the
corresponding file descriptor directly can “jump” ahead of
things written to the file poiner

• It can be stochastic as to which arrives first

• Instead, you should stick with only one for most of your
work

• fdopen() will wrap a FILE around a file descriptor

Andrew H. Fagg: Introduction to Operating Systems 57

Note: stick with file descriptors for our projects

i.e., open/close/read/write/lseek

Andrew H. Fagg: Introduction to Operating Systems 58

Andrew H. Fagg: Introduction to Operating Systems 62

Andrew H. Fagg: Introduction to Operating Systems 63

