
File Systems Internals

CS 3113

File-System Structure

• File structure
• Logical storage unit

• Collection of related information

• File system resides on secondary storage (disks)
• Provided user interface to storage, mapping logical to

physical

• Provides efficient and convenient access to disk by allowing
data to be stored, located retrieved easily

Andrew H. Fagg: Introduction to Operating Systems 2

File-System Structure

• Disk provides in-place rewrite and random access
• I/O transfers performed in blocks of sectors (usually 512

bytes)

• File control block – storage structure consisting of
information about a file

• Device driver controls the physical device

Andrew H. Fagg: Introduction to Operating Systems 3

Layered File System

Layering useful for reducing complexity
and redundancy, but adds overhead and
can decrease performance

Andrew H. Fagg: Introduction to Operating Systems 4

Device Drivers

Manage I/O devices at the I/O control layer
• Given commands like “read drive1, cylinder

72, track 2, sector 10, into memory location
1060” outputs low-level hardware specific
commands to hardware controller

Andrew H. Fagg: Introduction to Operating Systems 5

Basic File System

• Given command like “retrieve block
123” translates to device driver

• Also manages memory buffers and
caches (allocation, freeing,
replacement)

• Buffers hold data in transit

• Caches hold frequently used data

Andrew H. Fagg: Introduction to Operating Systems 6

File Organization Module

Understands files, logical address, and
physical blocks

• Translates logical block # to physical
block #

• Manages free space, disk allocation

Andrew H. Fagg: Introduction to Operating Systems 7

Logical File System

Manages metadata information

• Translates file name into file number,
file handle, location by maintaining
file control blocks (inodes in UNIX)

• Directory management

• Protection

Andrew H. Fagg: Introduction to Operating Systems 8

Many File System Types

Many file systems, sometimes many within an operating system

• Each with its own format
• CD-ROM is ISO 9660

• Unix has UFS, FFS;

• Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-
ray,

• Linux has more than 40 types, with extended file system ext2 and
ext3 leading

• Distributed file systems: Network File System (NFS, Andrew)

• New ones still arriving: ZFS, GoogleFS, Oracle ASM, FUSE

Andrew H. Fagg: Introduction to Operating Systems 9

File System Implementation

We are familiar with the system calls at the API level, but
how do we implement their functions?

• Boot control block contains info needed by system to
boot OS from that volume

• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table)
contains volume details

• Total # of blocks, # of free blocks, block size, free block
pointers or array

• Directory structure organizes the files
• Names and inode numbers, master file table

Andrew H. Fagg: Introduction to Operating Systems 10

Representing Individual Entities
(Files/Directories)

File Control Block (FCB) contains meta-level details
about the file. Also called an INODE

Andrew H. Fagg: Introduction to Operating Systems 11

Representation of Files/Directories

• Secondary storage:
• Persistent

• All data needed to represent the files/directories

• In-memory storage:
• Ephemeral

• Represents the data needed to manipulate the file (e.g., the
offset)

• Can also cache a subset of the file/directory data
• Fast access

• Modifications to the data are done here first

Andrew H. Fagg: Introduction to Operating Systems 12

Representation of Files/Directories

Andrew H. Fagg: Introduction to Operating Systems 13

Implementing Directories

• Linear list of file names with pointer to the data blocks
• Simple to program

• Time-consuming to execute
• Linear search time

• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time

• Collisions – situations where two file names hash to the
same location

• Only good if entries are fixed size, or use chained-overflow
method

Andrew H. Fagg: Introduction to Operating Systems 14

Allocating Space on the Disk

• An allocation method refers to how disk blocks are
allocated for files:

• Contiguous allocation – each file occupies set of
contiguous blocks

• Best performance in most cases

• Simple – only starting location (block #) and length (number
of blocks) are required

Andrew H. Fagg: Introduction to Operating Systems 15

Contiguous Allocation
Suppose we want to access byte
2021 of file “mail”. How do we find
it on the disk?

• Assume block size is 512

Load block: start + byte / BSIZE

19 + 2021 / 512 = 22

• Which byte?

byte % BSIZE

2021 % 512 = 485
Andrew H. Fagg: Introduction to Operating Systems 16

Contiguous Allocation

What are the problems with this approach?

Andrew H. Fagg: Introduction to Operating Systems 17

Contiguous Allocation

Problems include:

• Finding space for file

• Knowing file size ahead of time

• External fragmentation
• Spaces between files that are not used because only small

files will fit inside of them

• Solution: compaction off-line (downtime) or on-line

Andrew H. Fagg: Introduction to Operating Systems 18

Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use
a modified contiguous allocation scheme

• Allocate disk blocks in extents: a fixed-size contiguous
set of blocks

• A file consists of one or more extents

• We must maintain a table of these extents and their starting
locations

Andrew H. Fagg: Introduction to Operating Systems 19

Extent-Based Systems
Example: want to access byte 4131 of a file

• Assume:
• Extent size: 4 blocks

• Block size: 512

• Which extent?

ex = 4131 / (4*512) = 2

• Which block?

block = BSTART[ex] + 4131 / 512 – ex * 4 = 44 + 0 = 44

• Which byte?

byte = 4131 % (4*512) = 35
Andrew H. Fagg: Introduction to Operating Systems 20

Extent # Block Start

0 32

1 8

2 44

Extent-Based Systems

Advantages

• Contiguous allocation allows for quick access to groups
of blocks on the disk

• We don’t have to know file size ahead of time

• No external fragmentation
• A space between files can be used for any other file

Andrew H. Fagg: Introduction to Operating Systems 21

Extent-Based Systems

What are the problems?

Andrew H. Fagg: Introduction to Operating Systems 22

Extent-Based Systems

What are the problems?

• A bit harder to compute the block #

• Internal fragmentation: we don’t use some of the blocks
in an allocated extent

Andrew H. Fagg: Introduction to Operating Systems 23

Linked Allocation

• Linked list of blocks

• Each block contains a
“pointer” to the next block

• This is a block number (not a
memory pointer)

Andrew H. Fagg: Introduction to Operating Systems 24

pointerblock =

Linked Allocation

Accessing byte 2345:

• Which block (logical)?

2345 / 512 = 4

• How to find this block?
• Start with the first block

• Follow the linked list for 4 more hops

• Which byte in the block?

2345 % 512 = 297

Andrew H. Fagg: Introduction to Operating Systems 25

Linked Allocation

Advantages

• No external fragmentation

• Easy to add new bytes onto the end of a file

Andrew H. Fagg: Introduction to Operating Systems 26

Linked Allocation

Disadvantages

Andrew H. Fagg: Introduction to Operating Systems 27

Linked Allocation

Disadvantages

• Reliability can be a challenge
• Data about the location of the file contents are scattered all

over the disk

• Finding the right block to read can be a challenge

Andrew H. Fagg: Introduction to Operating Systems 28

Indexed Allocation

A block is dedicated to
maintaining an ordered list of the
blocks that contain the file
contents

Andrew H. Fagg: Introduction to Operating Systems 29

Indexed Allocation

Where to find byte 1281?

• Which block (logical)?

1281/ 512 = 2

• Which block (actual)?

table[2] = 1

• Which byte?

1281 % 512 = 257

Andrew H. Fagg: Introduction to Operating Systems 30

Indexed Allocation

Advantages

• No external fragmentation

Andrew H. Fagg: Introduction to Operating Systems 31

Indexed Allocation

Disadvantages?

Andrew H. Fagg: Introduction to Operating Systems 32

Indexed Allocation

Disadvantages?

• Must allocate another block for the index table

• Extra overhead to translate from logical to physical
blocks

• Random access to physical blocks (could mean more
access time)

Andrew H. Fagg: Introduction to Operating Systems 33

Indexed Allocation

How can we deal with large files?

Andrew H. Fagg: Introduction to Operating Systems 34

Indexed Allocation

How can we deal with large files?

• Linked list of index tables

• Hierarchical tables

Andrew H. Fagg: Introduction to Operating Systems 35

Indexed Allocation

Hierarchical tables

Andrew H. Fagg: Introduction to Operating Systems 36

Hybrid Indexed Scheme (Unix)

Unix INODE

• Direct block references:
point to data blocks

• Indirect block
references: point to
blocks that contain
references

• Very large files possible

• Efficient allocation when
we have small files

Andrew H. Fagg: Introduction to Operating Systems 37

Read Performance Considerations

Best method depends on file access type

• Contiguous great for sequential and random

• Linked good for sequential, but not random

• Indexed more complex
• Single block access could require 2 index block reads, then

the data block read

• Clustering of blocks can help improve throughput and
reduce CPU overhead

Andrew H. Fagg: Introduction to Operating Systems 38

Performance, cont.

Adding instructions to the execution path to save one
disk I/O is reasonable

• Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz =
159,000 MIPS

• Typical disk drive: 250 I/O operations per second
• 159,000 MIPS / 250 = 630 million instructions during one

disk I/O operation

• Fast SSD drives provide 60,000 IOPS
• 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O
Andrew H. Fagg: Introduction to Operating Systems 39

Free Space Management

File system must also keep track of which blocks are
available on the disk for allocation to new directories or
files

• Tracking can be done at the block level or at the level of
a cluster of blocks (extents of blocks)

Andrew H. Fagg: Introduction to Operating Systems 40

Free Space Management: Bit Vectors

One bit allocated per block on the disk

• Requires extra space:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of

memory

Andrew H. Fagg: Introduction to Operating Systems 41

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Free Space Management: Bit Vectors

One implementation for the last example:

• 32MB table: unsigned char table[32]

• Block 0: table[0], bit 0

• Block 1: table[0], bit 1

• Block 2: table[0], bit 2

• Block k: table[k/8], bit k%8

Andrew H. Fagg: Introduction to Operating Systems 42

Free Space Management: Bit Vectors

• Bit interpretation: 0 -> used; 1 -> free

• Assume table[3] = 0xA4, which blocks do we know are
free?

• 0xA4 = 1010 0100

• Blocks: 3*8+2, 3*8+5, 3*8+7 (26, 29, 31)

Andrew H. Fagg: Introduction to Operating Systems 43

Bit Vector

Assuming that the table is in memory:

• Can quickly find an available block
• What is the algorithm?

• Scan table until we find a byte value that is non-zero

• Then scan the bits in the byte, looking for a 1

• Can also quickly find a contiguous set of blocks
• Scan table until we find a byte value of 0xff

• This is a contiguous set of 8 blocks!

•
Andrew H. Fagg: Introduction to Operating Systems 44

Bit Vectors in Project 3

• Bit vectors are used to represent the allocation table for
the individual inodes

• Note that there are some differences in implementation
from what we have done here:

• One bit per inode

• Multiple inodes in a single disk block

• 1 = used; 0 = free

• Bit order is different

Andrew H. Fagg: Introduction to Operating Systems 45

Free Space with
Linked Lists

• Store reference to the front of the linked
list. For project 3

• This is in the master block

• We also have a pointer to the end of the list

• Each block has several bytes that are
dedicated to “pointing to” the next block
in the list

• Last block: contains a reference value that
indicates that there is no next block

Andrew H. Fagg: Introduction to Operating Systems 46

Free Space with
Linked Lists

• Allocate a new block:
• Take it from the front of the linked list (1

operation)

• Count number of free blocks:
• Must traverse the entire list (!)

• Free a block that is no longer needed:
• For project 3: we are adding it to the end of

the list

Andrew H. Fagg: Introduction to Operating Systems 47

Linked Lists

In addition to using the linked list for free blocks, we can
also use the “next” pointer to represent the next data
block in a file

• This is exactly what we do in project 3!

Andrew H. Fagg: Introduction to Operating Systems 48

Efficiency and Performance

• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of metadata
structures

• Fixed-size or varying-size data structures

Andrew H. Fagg: Introduction to Operating Systems 49

Performance

• Keeping data and metadata close together

• Buffer / cache: separate section of main memory for
frequently used blocks

• Sequential access optimizations:
• Free-behind: once user process starts accessing the next

block in a file, we no longer need to cache the current block

• Read-ahead: proactively fetch the next few blocks from the
disk

Andrew H. Fagg: Introduction to Operating Systems 50

Synchronous vs Asynchronous Writes

• Synchronous writes:
• No buffering / caching

• Writes must the hit disk before acknowledgement (i.e., return of
the system call that is requesting the write)

• This way, the process knows for sure that the data have been
stored, but it has to wait for completion

• Asynchronous writes:
• Write to the cache and return immediately

• At some point, the file system will write the cached blocks out to
the disk

• More common, faster, and efficient

• But, if there is a failure, the file changes may never reach the diskAndrew H. Fagg: Introduction to Operating Systems 51

File System Recovery

• Consistency checking: compare data in directory
structure with data blocks on disk, and attempt to fix
inconsistencies

• Can be slow and sometimes fails, requiring human input

• Backups:
• Use system programs to back up data from disk to another

storage device (magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup

Andrew H. Fagg: Introduction to Operating Systems 52

Log Structured File Systems

• Want the file system to be robust to failure at any time
• In particular, the file system must always be in a consistent

state

• Log-structured file systems:
• Have an existing file structure

• A write by a user process is recorded as an entry in a log file

• At a later time, an effective copy of the file structure is made
and the log of operations is executed

• Then, the new state of the file system replaces the old copy
in an atomic operation

Andrew H. Fagg: Introduction to Operating Systems 53

Log Structured File Systems

If a crash happens somewhere, we either have:

• The original state of the file system + (perhaps) the log
of changes

• Or the new state of the file system

• We are never left with a file system that is in the middle
of being modified

Andrew H. Fagg: Introduction to Operating Systems 54

File System Recovery
ZFS:

• “Copy on write”: any time the contents of a block are to
change, then the block is copied

• Maintain both copies of the block (and, effectively) two
different versions of the file:

• Original file

• Modified file

• A Snapshot explicitly gives the user the ability to
access the original files

• Requires more disk space, but can be managed
automatically Andrew H. Fagg: Introduction to Operating Systems 55

Example: WAFL File System

• Similar to Berkeley Fast File System, with extensive
modifications

• Used on Network Appliance “Filers”: distributed file
system appliances

• Serves up a variety of network protocols: NFS, CIFS,
http, ftp

• Random I/O optimized, write optimized

• NVRAM for write caching

Andrew H. Fagg: Introduction to Operating Systems 56

The WAFL File Layout

Andrew H. Fagg: Introduction to Operating Systems 57

Snapshots in WAFL

• New snapshot maintains an
old copy of the original file
system

• Original data are left in place

• Any changes to blocks are
made to new copies

Andrew H. Fagg: Introduction to Operating Systems 58

