File Systems Internals

CS 3113

File-System Structure

e File structure
* Logical storage unit
» Collection of related information

* File system resides on secondary storage (disks)

* Provided user interface to storage, mapping logical to
ohysical

 Provides efficient and convenient access to disk by allowing
data to be stored, located retrieved easily

File-System Structure

* Disk provides in-place rewrite and random access

* |/O transfers performed in blocks of sectors (usually 512
bytes)

* File control block — storage structure consisting of
iInformation about a file

* Device driver controls the physical device

Andrew H. Fagg: Introduction to Operating Systems

Layered File System

Layering useful for reducing complexity
and redundancy, but adds overhead and
can decrease performance

Andrew H. Fagg: Introduction to Operating Systems

application programs

‘\1 ?
e
V

logical file system

J

file-organization module

b

basic file system

b

/O control

devices

4

application programs

Device Drivers l

_ logical file system
Manage I/O devices at the I/O control layer
« Given commands like “read drivel, cylinder \l
72, track 2, sector 10, into memory location file-organization module
1060 outputs low-level hardware specific @

commands to hardware controller
basic file system

b

/O control

devices

Andrew H. Fagg: Introduction to Operating Systems

Basic File System

» Given command like “retrieve block
123" translates to device driver

* Also manages memory buffers and
caches (allocation, freeing,
replacement)

 Buffers hold data in transit
« Caches hold frequently used data

application programs

I

logical file system

J

file-organization module

basic file system

b

/O control

b

devices

File Organization Module

Understands files, logical address, and
physical blocks

 Translates logical block # to physical
block #

* Manages free space, disk allocation

Andrew H. Fagg: Introduction to Operating Systems

application programs

I

logical file system

J

file-organization module

b

basic file system

b

/O control

devices

7

Logical File System

Manages metadata information

 Translates file name into file number,
file handle, location by maintaining
file control blocks (inodes in UNIX)

* Directory management
* Protection

Andrew H. Fagg: Introduction to Operating Systems

application programs

I

logical file system

J

file-organization module

b

basic file system

b

/O control

devices

Many File System Types

Many file systems, sometimes many within an operating system

 Each with its own format
* CD-ROM is ISO 9660
 Unix has UFS, FFS;

* Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-
ray,

* Linux has more than 40 types, with extended file system ext2 and
ext3 leading

* Distributed file systems: Network File System (NFS, Andrew)
* New ones still arriving: ZFS, GoogleFS, Oracle ASM, FUSE

File System Implementation

We are familiar with the system calls at the APl level, but
how do we implement their functions?

* Boot control block contains info needed by system to
boot OS from that volume
* Needed If volume contains OS, usually first block of volume
* Volume control block (superblock, master file table)
contains volume details

e Total # of blocks, # of free blocks, block size, free block
pointers or array

* Directory structure organizes the files
 Names and inode numbers, master file table

Andrew H. Fagg: Introduction to Operating Systems 10

Representing Individual Entities
(Files/Directories)

File Control Block (FCB) contains meta-level detalls
about the file. Also called an INODE

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Andrew H. Fagg: Introduction to Operating Systems 11

Representation of Files/Directories

« Secondary storage:
* Persistent
 All data needed to represent the files/directories

* In-memory storage:
* Ephemeral

* Represents the data needed to manipulate the file (e.g., the
offset)
« Can also cache a subset of the file/directory data

 Fast access
 Modifications to the data are done here first

Representation of Files/Directories

directory structure
open (file name) >
directory structure

file-control block

user space kernel memory secondary storage
(a)
index
/
/ data blocks
—
read (index) T ———]
per-process system-wide file-control block
open-file table open-file table

user space kernel memory secondary storage

(b)

Implementing Directories

 Linear list of file names with pointer to the data blocks
e Simple to program
* Time-consuming to execute

 Linear search time
« Could keep ordered alphabetically via linked list or use B+ tree

« Hash Table — linear list with hash data structure
» Decreases directory search time

* Collisions — situations where two file names hash to the
same location

* Only good Iif entries are fixed size, or use chained-overflow
method

Allocating Space on the Disk

 An allocation method refers to how disk blocks are
allocated for files:

* Contiguous allocation — each file occupies set of
contiguous blocks
» Best performance in most cases

« Simple — only starting location (block #) and length (number
of blocks) are required

Contiguous Allocation
Suppose we want to access byte

2021 of file “mail”’. How do we find @ directory

It on the disk? T fle start length

* Assume block size is 512 g P 92 G
4] 501 e[70 e

Load block: start + byte / BSIZE - it 28 4

19 + 2021 / 512 = 22 12[_113[114 |t1r5| | f - -
16[_|17[_[18[|19 |

* Which byte? 2024 [To2 (23]

byte % BSIZE 24[]25] Efl l27[]

2021 9% 512 = 485 28129 J30[_I31[_|

R

Contiguous Allocation

What are the problems with this approach?

Contiguous Allocation

Problems include:
* Finding space for file
» Knowing file size ahead of time

* External fragmentation

« Spaces between files that are not used because only small
files will fit inside of them

 Solution: compaction off-line (downtime) or on-line

Extent-Based Systems

* Many newer file systems (i.e., Veritas File System) use
a modified contiguous allocation scheme

* Allocate disk blocks in extents: a fixed-size contiguous
set of blocks
* A file consists of one or more extents

* We must maintain a table of these extents and their starting
locations

Extent-Based Systems
Example: want to access byte 4131 of a file

e Assume: Extent # Block Start
 Extent size: 4 blocks 0 32
* Block size: 512
. 1 8
 Which extent?
2 44

ex = 4131 / (4*512) = 2

* Which block?

block = BSTART[ex] + 4131 /512 —ex*4 =44+ 0 =44
* Which byte?

byte = 4131 % (4*512) = 35

Extent-Based Systems

Advantages

» Contiguous allocation allows for quick access to groups
of blocks on the disk

* \We don’t have to know file size ahead of time

* No external fragmentation
A space between files can be used for any other file

Extent-Based Systems

What are the problems?

Extent-Based Systems

What are the problems?
* A bit harder to compute the block #

* Internal fragmentation: we don’t use some of the blocks
iIn an allocated extent

Linked Allocation

* Linked list of blocks

* Each block contains a
“pointer” to the next block
* This i1s a block number (not a

memory pointer)

block

pointer

Andrew H. Fagg: Introduction to

directory
file start end
jeep 9 25

i el |

20[|21 2l 2] |

24)25 -1é6|_|27l_l

28 J29[J30[|31[]

N

Linked Allocation

Accessing byte 2345:
* Which block (logical)?
2345 /512 =4

 How to find this block?
e Start with the first block
 Follow the linked list for 4 more hops

* Which byte in the block?
2345 % 512 = 297

Linked Allocation

Advantages
* No external fragmentation
« Easy to add new bytes onto the end of a file

Linked Allocation

Disadvantages

Linked Allocation

Disadvantages

 Reliability can be a challenge

 Data about the location of the file contents are scattered all
over the disk

 Finding the right block to read can be a challenge

Indexed Allocation

A block Is dedicated to
maintaining an ordered list of the
blocks that contain the file
contents

16
20 J21[J22[A23[|
24[125[126 J27[]
28[]29[J30[131[]

directory
file index block
jeep 19

..

Andrew H. Fagg: Introduction to Operating Systems

29

Indexed Allocation

Where to find byte 12817

* Which block (logical)?
1281/ 512 =2

* Which block (actual)?
table[2] = 1

* Which byte?
1281 % 512 = 257

N
b

o] 1] 2[] 3[]
4[] 5[] 7]
8[]9 1;\%11D
12[118 J14N1
16

20 J21[J22[A23[|
24 125[J26 |27]

28[|29 130 J31[]

.

Andrew H. Fagg: Introduction to Operating Systems

directory
file index block
jeep 19

30

Indexed Allocation

Advantages
* No external fragmentation

Indexed Allocation

Disadvantages?

Indexed Allocation

Disadvantages?

 Must allocate another block for the index table

» Extra overhead to translate from logical to physical
blocks

« Random access to physical blocks (could mean more
access time)

Indexed Allocation

How can we deal with large files?

Indexed Allocation

How can we deal with large files?
 Linked list of iIndex tables
* Hierarchical tables

Indexed Allocation

Hierarchical tables

// ——-‘/-—_
SN
AN) |
™ [
\\
\\
outer-index

index table file B

Hybrid Indexed Scheme (Unix)

Unix INODE

* Direct block references:
noint to data blocks

 Indirect block
references: point to
blocks that contain
references

* Very large files possible

e Efficient allocation when
we have small files

mode

owners (2)

timestamps (3)

size block count

data

data

data

direct blocks -

data

single indirect —

data

double indirect

data

data

triple indirect

data

data

data

Read Performance Considerations

Best method depends on file access type
» Contiguous great for sequential and random
* Linked good for sequential, but not random

* Indexed more complex

« Single block access could require 2 index block reads, then
the data block read

* Clustering of blocks can help improve throughput and
reduce CPU overhead

Performance, cont.

Adding Instructions to the execution path to save one
disk 1/O Is reasonable

* Intel Core 17 Extreme Edition 990x (2011) at 3.46Ghz =
159,000 MIPS

* Typical disk drive: 250 I/O operations per second
« 159,000 MIPS / 250 = 630 million instructions during one
disk 1/O operation
* Fast SSD drives provide 60,000 IOPS

« 159,000 MIPS / 60,000 = 2.65 millions instructions during
one disk I/O

Free Space Management

File system must also keep track of which blocks are
avalilable on the disk for allocation to new directories or

files
* Tracking can be done at the block level or at the level of

a cluster of blocks (extents of blocks)

Free Space Management: Bit Vectors

One bit allocated per block on the disk 01 2 n-1
* Requires extra space:
block size = 4KB = 212 bytes o] { 1 = blockf] free
0 = block]i] occupied

disk size = 240 bytes (1 terabyte)
n = 249/212 = 228 pits (or 32MB)

If clusters of 4 blocks -> 8MB of
memory

Free Space Management: Bit Vectors

One implementation for the last example:

e 32MB table: unsigned char table[32]
* Block O: table[0], bit O

* Block 1: table[0], bit 1

* Block 2: table[0], bit 2
* Block k: table[k/8], bit k%8

Free Space Management: Bit Vectors

* Bit Interpretation: 0 -> used; 1 -> free

» Assume table[3] = O0xA4, which blocks do we know are
free?

. 0xA4 = 1010 0100
- Blocks: 3*8+2, 3*8+5, 3*8+7 (26, 29, 31)

Assuming t
« Can quick

Bit Vector

nat the table Is In memory:
y find an available block

* What is the algorithm?

« Scan table until we find a byte value that is non-zero
* Then scan the bits in the byte, looking for a 1

« Can also quickly find a contiguous set of blocks
« Scan table until we find a byte value of Oxff

e This IS a

contiguous set of 8 blocks!

Bit Vectors in Project 3

* Bit vectors are used to represent the allocation table for
the individual inodes

* Note that there are some differences in implementation
from what we have done here:
* One bit per inode
« Multiple inodes in a single disk block
« 1 = used,; 0 = free
* Bit order is different

Free Space with e
" " free-space list head

Linked Lists o] 1] 23
» Store reference to the front of the linked 4ﬁ a1 7

list. For project 3 2
 This is Iin the master block sLJ oL oL T
* We also have a pointer to the end of the list 12 [13[1415
 Each block has several bytes that are 6117 ‘ Py SE

dedicated to “pointing to” the next block

In the list 0_lell_Bof lee

» Last block: contains a reference value that oA 125 logl 107] %
Indicates that there i1s no next block

28| 29| |30 |31

N

Free Space with | I —
Llﬂked LIStS ree-space list hea : 1 m

. Allocate a new block: 4? sl 1 7

 Take it from the front of the linked list (1

S0 SEI10|8 11

operation)
* Count number of free blocks: 12 [13[114115
* Must traverse the entire list (!) i) s

* Free a block that is no longer needed:

 For project 3: we are adding it to the end of
the list 24 |25[J26] 127]

20| 21| |22¢ |23

28| 29| |30 |31

.

Linked Lists

In addition to using the linked list for free blocks, we can
also use the “next” pointer to represent the next data

block in a file
* This Is exactly what we do In project 3!

Efficiency and Performance

* Disk allocation and directory algorithms
* Types of data kept in file's directory entry

* Pre-allocation or as-needed allocation of metadata
structures

 Fixed-size or varying-size data structures

Performance

» Keeping data and metadata close together

* Buffer / cache: separate section of main memory for
frequently used blocks

* Sequential access optimizations:

* Free-behind: once user process starts accessing the next
nlock In a file, we no longer need to cache the current block

- Read-ahead: proactively fetch the next few blocks from the
disk

Synchronous vs Asynchronous Writes

* Synchronous writes:
* No buffering / caching

 Writes must the hit disk before acknowledgement (i.e., return of
the system call that is requesting the write)

* This way, the process knows for sure that the data have been
stored, but it has to wait for completion

* Asynchronous writes:
 \Write to the cache and return immediately

« At some point, the file system will write the cached blocks out to
the disk

« More common, faster, and efficient
* But, If there is a failure, the file changes may never reach the disk

File System Recovery

» Consistency checking: compare data in directory
structure with data blocks on disk, and attempt to fix
Inconsistencies

« Can be slow and sometimes fails, requiring human input

» Backups:

« Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical)

* Recover lost file or disk by restoring data from backup

Log Structured File Systems

* Want the file system to be robust to failure at any time

* In particular, the file system must always be in a consistent
state

* Log-structured file systems:
« Have an existing file structure
« A write by a user process Is recorded as an entry in a log file

At a later time, an effective copy of the file structure is made
and the log of operations is executed

* Then, the new state of the file system replaces the old copy
INn an atomic operation

Log Structured File Systems

If a crash happens somewhere, we either have:

* The original state of the file system + (perhaps) the log
of changes

* Or the new state of the file system

* We are never left with a file system that is in the middle
of being modified

File System Recovery
LFS:

 “Copy on write™. any time the contents of a block are to
change, then the block Is copied

* Maintain both copies of the block (and, effectively) two
different versions of the file:
* Original file
« Modified file

* A Snapshot explicitly gives the user the ability to
access the original files

* Requires more disk space, but can be managed
automatically

Example: WAFL File System

» Similar to Berkeley Fast File System, with extensive
modifications

» Used on Network Appliance “Filers”: distributed file
system appliances

» Serves up a variety of network protocols: NFS, CIFS,
http, ftp

« Random I/O optimized, write optimized
* NVRAM for write caching

The WAFL File Layout

root inode

inode file

|

free block map

free inode map

file in the file system...

Andrew H. Fagg: Introduction to Operating Systems

57

root inode

Snapshots in WAFL f \w\ :

) Before a snapshot.

* New snapshot maintains an
old copy of the original file

root inode new snapshot
system
 Original data are left in place oaxallallclolle
° Any Changes to bIOCkS are (b) After a snapshot, before any blocks change.

made to new copies

root inode new snapshot

block A||B||C||D]||E D-

Andrew H. Fagg: Introduction to Operating ! (C) After block D has Changed toD".

