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File-System Structure

• File structure
• Logical storage unit

• Collection of related information

• File system resides on secondary storage (disks)
• Provided user interface to storage, mapping logical to 

physical

• Provides efficient and convenient access to disk by allowing 
data to be stored, located retrieved easily
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File-System Structure

• Disk provides in-place rewrite and random access
• I/O transfers performed in blocks of sectors (usually 512 

bytes)

• File control block – storage structure consisting of 
information about a file

• Device driver controls the physical device 
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Layered File System 

Layering useful for reducing complexity 
and redundancy, but adds overhead and 
can decrease performance
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Device Drivers

Manage I/O devices at the I/O control layer
• Given commands like “read drive1, cylinder 

72, track 2, sector 10, into memory location 
1060” outputs low-level hardware specific 
commands to hardware controller
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Basic File System

• Given command like “retrieve block 
123” translates to device driver

• Also manages memory buffers and 
caches (allocation, freeing, 
replacement) 

• Buffers hold data in transit

• Caches hold frequently used data
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File Organization Module

Understands files, logical address, and 
physical blocks

• Translates logical block # to physical 
block #

• Manages free space, disk allocation
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Logical File System

Manages metadata information

• Translates file name into file number, 
file handle, location by maintaining 
file control blocks (inodes in UNIX)

• Directory management

• Protection
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Many File System Types

Many file systems, sometimes many within an operating system

• Each with its own format 
• CD-ROM is ISO 9660

• Unix has UFS, FFS;  

• Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-
ray, 

• Linux has more than 40 types, with extended file system ext2 and 
ext3 leading

• Distributed file systems: Network File System (NFS, Andrew)

• New ones still arriving: ZFS, GoogleFS, Oracle ASM, FUSE
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File System Implementation

We are familiar with the system calls at the API level, but 
how do we implement their functions?

• Boot control block contains info needed by system to 
boot OS from that volume

• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table)
contains volume details

• Total # of blocks, # of free blocks, block size, free block 
pointers or array

• Directory structure organizes the files
• Names and inode numbers, master file table
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Representing Individual Entities 
(Files/Directories)

File Control Block (FCB) contains meta-level details 
about the file. Also called an INODE
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Representation of Files/Directories

• Secondary storage:
• Persistent

• All data needed to represent the files/directories

• In-memory storage:
• Ephemeral 

• Represents the data needed to manipulate the file (e.g., the 
offset)

• Can also cache a subset of the file/directory data
• Fast access

• Modifications to the data are done here first
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Representation of Files/Directories
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Implementing Directories

• Linear list of file names with pointer to the data blocks
• Simple to program

• Time-consuming to execute
• Linear search time

• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time

• Collisions – situations where two file names hash to the 
same location

• Only good if entries are fixed size, or use chained-overflow 
method
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Allocating Space on the Disk

• An allocation method refers to how disk blocks are 
allocated for files:

• Contiguous allocation – each file occupies set of 
contiguous blocks

• Best performance in most cases

• Simple – only starting location (block #) and length (number 
of blocks) are required
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Contiguous Allocation
Suppose we want to access byte 
2021 of file “mail”.  How do we find 
it on the disk?

• Assume block size is 512

Load block: start + byte / BSIZE

19 + 2021 / 512 = 22

• Which byte?

byte % BSIZE

2021 % 512 = 485
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Contiguous Allocation

What are the problems with this approach?
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Contiguous Allocation

Problems include:

• Finding space for file

• Knowing file size ahead of time

• External fragmentation
• Spaces between files that are not used because only small 

files will fit inside of them

• Solution: compaction off-line (downtime) or on-line

Andrew H. Fagg: Introduction to Operating Systems 18



Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use 
a modified contiguous allocation scheme

• Allocate disk blocks in extents: a fixed-size contiguous 
set of blocks

• A file consists of one or more extents

• We must maintain a table of these extents and their starting 
locations
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Extent-Based Systems
Example: want to access byte 4131 of a file

• Assume:
• Extent size: 4 blocks

• Block size: 512

• Which extent?

ex = 4131 / (4*512) = 2

• Which block?

block = BSTART[ex] + 4131 / 512 – ex * 4 = 44 + 0 = 44

• Which byte?

byte = 4131 % (4*512) = 35
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0 32

1 8

2 44



Extent-Based Systems

Advantages

• Contiguous allocation allows for quick access to groups 
of blocks on the disk

• We don’t have to know file size ahead of time

• No external fragmentation
• A space between files can be used for any other file
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Extent-Based Systems

What are the problems?
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Extent-Based Systems

What are the problems?

• A bit harder to compute the block #

• Internal fragmentation: we don’t use some of the blocks 
in an allocated extent
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Linked Allocation

• Linked list of blocks

• Each block contains a 
“pointer” to the next block

• This is a block number (not a 
memory pointer)
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Linked Allocation

Accessing byte 2345:

• Which block (logical)?

2345 / 512 = 4

• How to find this block?
• Start with the first block

• Follow the linked list for 4 more hops

• Which byte in the block?

2345 % 512 = 297
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Linked Allocation

Advantages

• No external fragmentation

• Easy to add new bytes onto the end of a file
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Linked Allocation

Disadvantages
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Linked Allocation

Disadvantages

• Reliability can be a challenge
• Data about the location of the file contents are scattered all 

over the disk

• Finding the right block to read can be a challenge
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Indexed Allocation

A block is dedicated to 
maintaining an ordered list of the 
blocks that contain the file 
contents
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Indexed Allocation

Where to find byte 1281?

• Which block (logical)?

1281/ 512 = 2

• Which block (actual)?

table[2] = 1

• Which byte?

1281 % 512 = 257
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Indexed Allocation

Advantages

• No external fragmentation
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Indexed Allocation

Disadvantages?
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Indexed Allocation

Disadvantages?

• Must allocate another block for the index table

• Extra overhead to translate from logical to physical 
blocks

• Random access to physical blocks (could mean more 
access time)

Andrew H. Fagg: Introduction to Operating Systems 33



Indexed Allocation

How can we deal with large files?
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Indexed Allocation

How can we deal with large files?

• Linked list of index tables

• Hierarchical tables
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Indexed Allocation

Hierarchical tables
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Hybrid Indexed Scheme (Unix)

Unix INODE

• Direct block references: 
point to data blocks

• Indirect block 
references: point to 
blocks that contain 
references

• Very large files possible

• Efficient allocation when 
we have small files
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Read Performance Considerations

Best method depends on file access type

• Contiguous great for sequential and random

• Linked good for sequential, but not random

• Indexed more complex
• Single block access could require 2 index block reads, then 

the data block read

• Clustering of blocks can help improve throughput and 
reduce CPU overhead
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Performance, cont.

Adding instructions to the execution path to save one 
disk I/O is reasonable

• Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 
159,000 MIPS

• Typical disk drive: 250 I/O operations per second
• 159,000 MIPS / 250 = 630 million instructions during one 

disk I/O operation

• Fast SSD drives provide 60,000 IOPS
• 159,000 MIPS / 60,000 = 2.65 millions instructions during 

one disk I/O
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Free Space Management

File system must also keep track of which blocks are 
available on the disk for allocation to new directories or 
files

• Tracking can be done at the block level or at the level of 
a cluster of blocks (extents of blocks)
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Free Space Management: Bit Vectors

One bit allocated per block on the disk

• Requires extra space:

block size = 4KB =  212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of 

memory
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0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied



Free Space Management: Bit Vectors

One implementation for the last example:

• 32MB table: unsigned char table[32]

• Block 0: table[0], bit 0

• Block 1: table[0], bit 1

• Block 2: table[0], bit 2

• Block k: table[k/8], bit k%8
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Free Space Management: Bit Vectors

• Bit interpretation: 0 -> used; 1 -> free

• Assume table[3] = 0xA4, which blocks do we know are 
free?

• 0xA4 = 1010 0100

• Blocks: 3*8+2, 3*8+5, 3*8+7  (26, 29, 31)
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Bit Vector

Assuming that the table is in memory:

• Can quickly find an available block
• What is the algorithm?

• Scan table until we find a byte value that is non-zero

• Then scan the bits in the byte, looking for a 1

• Can also quickly find a contiguous set of blocks
• Scan table until we find a byte value of 0xff 

• This is a contiguous set of 8 blocks!

•
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Bit Vectors in Project 3

• Bit vectors are used to represent the allocation table for 
the individual inodes

• Note that there are some differences in implementation 
from what we have done here:

• One bit per inode

• Multiple inodes in a single disk block

• 1 = used; 0 = free

• Bit order is different
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Free Space with 
Linked Lists

• Store reference to the front of the linked 
list.  For project 3

• This is in the master block

• We also have a pointer to the end of the list

• Each block has several bytes that are 
dedicated to “pointing to” the next block 
in the list

• Last block: contains a reference value that 
indicates that there is no next block

Andrew H. Fagg: Introduction to Operating Systems 46



Free Space with 
Linked Lists

• Allocate a new block:
• Take it from the front of the linked list (1 

operation)

• Count number of free blocks:
• Must traverse the entire list (!)

• Free a block that is no longer needed: 
• For project 3: we are adding it to the end of 

the list
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Linked Lists

In addition to using the linked list for free blocks, we can 
also use the “next” pointer to represent the next data 
block in a file

• This is exactly what we do in project 3!
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Efficiency and Performance

• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of metadata 
structures

• Fixed-size or varying-size data structures
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Performance

• Keeping data and metadata close together

• Buffer / cache: separate section of main memory for 
frequently used blocks

• Sequential access optimizations:
• Free-behind: once user process starts accessing the next 

block in a file, we no longer need to cache the current block

• Read-ahead: proactively fetch the next few blocks from the 
disk
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Synchronous vs Asynchronous Writes

• Synchronous writes: 
• No buffering / caching

• Writes must the hit disk before acknowledgement (i.e., return of 
the system call that is requesting the write)

• This way, the process knows for sure that the data have been 
stored, but it has to wait for completion

• Asynchronous writes:
• Write to the cache and return immediately

• At some point, the file system will write the cached blocks out to 
the disk

• More common, faster, and efficient
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File System Recovery

• Consistency checking: compare data in directory 
structure with data blocks on disk, and attempt to fix 
inconsistencies

• Can be slow and sometimes fails, requiring human input

• Backups:
• Use system programs to back up data from disk to another 

storage device (magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup
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Log Structured File Systems

• Want the file system to be robust to failure at any time
• In particular, the file system must always be in a consistent 

state

• Log-structured file systems:
• Have an existing file structure

• A write by a user process is recorded as an entry in a log file

• At a later time, an effective copy of the file structure is made 
and the log of operations is executed

• Then, the new state of the file system replaces the old copy 
in an atomic operation
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Log Structured File Systems

If a crash happens somewhere, we either have:

• The original state of the file system + (perhaps) the log 
of changes

• Or the new state of the file system

• We are never left with a file system that is in the middle 
of being modified 
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File System Recovery
ZFS:

• “Copy on write”: any time the contents of a block are to 
change, then the block is copied

• Maintain both copies of the block (and, effectively) two 
different versions of the file:

• Original file

• Modified file

• A Snapshot explicitly gives the user the ability to 
access the original files

• Requires more disk space, but can be managed 
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Example: WAFL File System

• Similar to Berkeley Fast File System, with extensive 
modifications

• Used on Network Appliance “Filers”: distributed file 
system appliances

• Serves up a variety of network protocols: NFS, CIFS, 
http, ftp

• Random I/O optimized, write optimized

• NVRAM for write caching
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The WAFL File Layout
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Snapshots in WAFL

• New snapshot maintains an 
old copy of the original file 
system

• Original data are left in place

• Any changes to blocks are 
made to new copies
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