 HW guestions
e Course reviews



Final Preparation

CS3113



Exam Mechanics

* When: Friday, December 13th, 1:30-3:30
« Wait until you are invited into the room
* FInd an unclaimed seat with an exam

* One page of notes is allowed.

 8.5x11 paper (double-sided is fine). Typed or handwritten. No
Magnification instruments.

« Scratch paper Is allowed

* No electronic devices, including: calculators, watches,
Iwatches, phones, laptops, Tamagotchis, tablets, ...

» Contact drc.ou.edu for appropriate accommodations
(drc@ou.edu).



Exam Mechanics

* Multiple choice
* Coverage will be theory to practical programming
* No generation of code

* But: many guestions will be about code
* Here Is code, what does it output?

* Here Is what the code Is supposed to do + the code; where Is
the bug?

-> Need to know your API



Midterm Topics

 Byte-level representations and pointers
« Compller vs linker + Makefiles

* Bit-wise operators in C

» System calls

e Streams

* Files and File Systems

* Processes

* Threads (we were just starting)



Threads

* What Is the distinction between a process and a thread?
* Threads share memory (globals, heap), program spaces
* Threads have their own stack & registers

* Why should we use threads?

« Parallelization and Amdahl’s Law speedup < ——q—5

» User vs Kernel space threads
* One-to-One, Many-to-One and Many-to-Many




Implementation of File Systems

* Boot block: code that begins the OS boot process

* Volume Control (or Master) block: disk descriptor
(number of blocks, block size, etc.), allocation state

 File meta-data: name, size, access permissions, time
stamps, location on disk ...
* [n Unix, we use an INODE for this

« Hard disks (persistent storage) vs memory (ephemeral
storage)



Implementation of File Systems

* Implementing directories:
* Linear lists vs hash tables

* Allocation of disk blocks for file storage:
« Contiguous
» Extent-based
 Indexed (including hierarchies)
* Linked list



Implementation of File Systems

* Free space management

* Bit vectors
e Linked list

* File system recovery
« Back-ups
 Log-structured files
« Copy-on-write: WAFL file system & snapshots



CPU Scheduling

» Performance measures: CPU utilization, throughput,
turn-around time, wait time, response time

» Scheduling algorithms
 First-Come-First-Served
« Shortest-Job-First
« Shortest-Remaining-Time-First
* Priority: with and without preemption

* Round-Robin
« Time quanta vs context switch time

« Multi-level queues
* Multi-Level Feedback Queue



Synchronization

 Shared data structures
 Circular buffer

 Producer / Consumer model
* Race conditions and preemption
 Critical sections



Solving the Synchronization Problem

Critical properties that we want to achieve:
* Mutual exclusion

* Progress

* Bounded waliting



Mechansims

« Hardware solutions: test-and-set, compare-and-swap
« Mutual exclusion, progress, but no guarantee on bounded
walt
» Software solutions:
* mutex locks: acquire() and release()
« Semaphores: wait() and signal()

* Busy waiting for many of these methods, but higher
level approaches offer process queuing that avoids
busy waiting

 Must be careful about starvation



Using Semaphores

 Bounded buffer
* Dining philosophers
 Readers/writers



Deadlock

Necessary and sufficient conditions for deadlock (all must
be true):

* Mutual Exclusion
* Hold and Wait

* NO preemption
 Circular wait



Deadlock

Resource allocation graphs
* Single instance of each resource

* Multiple instances of some
resources

Andrew H. Fagg: Introduction to Operating Systems




Deadlock

 Deadlock Prevention:

 Fixed set of rules that remove one of the necessary &
sufficient conditions for deadlock

 Deadlock Avoidance:

« Make context-specific decisions on the fly as to whether an
allocation request should be granted
 Single Instance per resource type:
« Use allocation graph
« |f an allocation results in a cycle, then do not grant it
« Multiple instances per resource type:

« Banker’s Algorithm
« |If an allocation results.in.an.unsafe. state,.then do not grant it



Office Hours During Finals Week

e Me: T/Th 9-11:30
e Dorian: W 1-3; Th 3-5

* Appointments are possible, too



Preparing

* Lecture notes
* Assigned readings
* Quizzes / homework assignments

* We have also done many coding examples in class
* Review these: focus on the functionality

* Prior exams: see the prior classes section of my home
page



Andrew H. Fagg: Introduction to Operating Systems

20



