MAKE ME A SANDWICH.

WHAT? MAKE
1T YOURSELF.

SUDO MAKE ME
A SANDWICH.

xkcd.com

Our Virtual Machine
Ubuntu 16.04

* Install VirtualBox
* Download VM image from course web site

* Import image
* Boot image

(written detalils coming)

(Some) Unix Commands You Should Know

e pwd e cd
* 1S « hexdump
*ls -l * WC
e Is -la - top
 touch

* make

e cat, more, less
 mkdir, rmdir
*rm

e rm -rf

Other Key Unix Concepts / Tools

* Absolute vs relative paths

e Editors
* emacs
e NANO
* Vim

e sudo

« Execute commands as the administrator
e sudo shutdown —h now

Compiling Code Bases

e GNU
 Not
e Unix

CG and AHF: Introduction to Operating Systems: Make Files

Generating an Executable File

Compiler: translate from

Obiject File (.0) human readable to

. . machine-specific code
e Intermediate machine-

specific representation of
just what is in a C file Linker: bring together
T~ multiple object files so that

. all functions are known
Executable (no extensmn)‘/ 0

Gnu C Compiler (gcc)

* Performs the compiling and linking phases for us

* Also invokes the assembler as part of the compiling
process

Executing an Executable File

Executable (no extension)

N\ Loader: bring together
executable and
dynamically linked libraries

Executing Process

Compiling Code Bases

As the set of files In a program gets large, we want to:
« Have a way to invoke the compliler easily
* Only compile the code that needs to be compiled

« Have a way to track which files depend on which other
files

Invoking gcc at the compiler gets tiring and error prone...

Make Files

One of several ways to manage the compiling/project
management process

» Define dependencies: what files depend on other files?

* Define rules for how to create derived files
* Including the invocation of the compiler

» Uses file time stamps to know what work actually needs
to be done

Our First Program

#include <stdio.h>

int main (1nt argc, char** argv)

{
printf ("Hello, World\n");

gce hello.c -o hello

Our First Makefile

The top rule is executed by default
all: hello

Other rules are invoked as necessary
Rule for creating the hello executable

hello: hello.c
gcc hello.c -o hello

Live demo...

CG and AHF: Introduction to Operating Systems: Make Files

max

Processes and Memory

On process creation, the process Is
effectively given its own memory space

 Text: storage of code

 Data: global variables (preallocated
space)

* Heap: dynamically allocated space
 Stack: local variable storage

stack

heap

data

text

Stack and Heap

» Stack grows downward with each nested function call
 Local variables, register state, return memory address

* Heap

« Storage of dynamically allocated items that must be
persistent across function calls (and returns from function
calls)

* OOP languages: object instantiation is done in the heap

Variables

* Every variable declaration results in an allocation of
memory

* For primitive data types (int, char, float), the name of the
variable refers to the value that is stored in the
corresponding memory location

* However, we can get at the actual memory location
int a;

a = 35;

&a refers to the address 1n memory

