
xkcd.com

Our Virtual Machine

Ubuntu 16.04

• Install VirtualBox

• Download VM image from course web site

• Import image

• Boot image

(written details coming)

CG and AHF: Introduction to Operating Systems: Make Files

(Some) Unix Commands You Should Know

• pwd

• ls

• ls -l

• ls -la

• touch

• cat, more, less

• mkdir, rmdir

• rm

• rm -rf

CG and AHF: Introduction to Operating Systems: Make Files

• cd

• hexdump

• wc

• top

• make

Other Key Unix Concepts / Tools

• Absolute vs relative paths

• Editors
• emacs

• nano

• vim

• sudo
• Execute commands as the administrator

• sudo shutdown –h now

CG and AHF: Introduction to Operating Systems: Make Files

Compiling Code Bases

• Gnu

• Not

• Unix

CG and AHF: Introduction to Operating Systems: Make Files

Generating an Executable File

C File (.c)

Object File (.o)

• Intermediate machine-
specific representation of
just what is in a C file

Executable (no extension)

CG and AHF: Introduction to Operating Systems: Make Files

Compiler: translate from
human readable to
machine-specific code

Linker: bring together
multiple object files so that
all functions are known

Gnu C Compiler (gcc)

• Performs the compiling and linking phases for us

• Also invokes the assembler as part of the compiling
process

CG and AHF: Introduction to Operating Systems: Make Files

Executing an Executable File

Executable (no extension)

Executing Process

CG and AHF: Introduction to Operating Systems: Make Files

Loader: bring together
executable and
dynamically linked libraries

Compiling Code Bases

As the set of files in a program gets large, we want to:

• Have a way to invoke the compiler easily

• Only compile the code that needs to be compiled

• Have a way to track which files depend on which other
files

Invoking gcc at the compiler gets tiring and error prone…

CG and AHF: Introduction to Operating Systems: Make Files

Make Files

One of several ways to manage the compiling/project
management process

• Define dependencies: what files depend on other files?

• Define rules for how to create derived files
• Including the invocation of the compiler

• Uses file time stamps to know what work actually needs
to be done

CG and AHF: Introduction to Operating Systems: Make Files

Our First Program

#include <stdio.h>

int main(int argc, char** argv)

{

printf("Hello, World\n");

}

gcc hello.c –o hello

CG and AHF: Introduction to Operating Systems: Make Files

Our First Makefile

The top rule is executed by default

all: hello

Other rules are invoked as necessary

Rule for creating the hello executable

hello: hello.c

gcc hello.c -o hello

CG and AHF: Introduction to Operating Systems: Make Files

Live demo…

CG and AHF: Introduction to Operating Systems: Make Files

Processes and Memory

CG and AHF: Introduction to Operating Systems: Make Files

On process creation, the process is
effectively given its own memory space

• Text: storage of code

• Data: global variables (preallocated
space)

• Heap: dynamically allocated space

• Stack: local variable storage

Stack and Heap

• Stack grows downward with each nested function call
• Local variables, register state, return memory address

• Heap
• Storage of dynamically allocated items that must be

persistent across function calls (and returns from function
calls)

• OOP languages: object instantiation is done in the heap

CG and AHF: Introduction to Operating Systems: Make Files

Variables

• Every variable declaration results in an allocation of
memory

• For primitive data types (int, char, float), the name of the
variable refers to the value that is stored in the
corresponding memory location

• However, we can get at the actual memory location

int a;

a = 5;

&a refers to the address in memory

CG and AHF: Introduction to Operating Systems: Make Files

