Midterm Preparation

CS3113



Exam Mechanics

* When: Tuesday, October 8th, 1:30-2:45
« Wait until you are invited into the room
* FInd an unclaimed seat with an exam

* One page of notes is allowed.

 8.5x11 paper (double-sided is fine). Typed or handwritten. No
Magnification instruments.

« Scratch paper Is allowed

* No electronic devices.
* Including calculators, watches, iwatches, phones, laptops,
Tamagotchis, tablets, ...

» Contact drc.ou.edu for appropriate accommodations
(drc@ou.edu).



Exam Mechanics

* Multiple choice
* Coverage will be theory to practical programming
* No generation of code

* But: many guestions will be about code
* Here Is code, what does it output?

* Here Is what the code Is supposed to do + the code; where Is
the bug?

 -> Need to know your API



Topics

 Byte-level representations and pointers
« Compller vs linker + Makefiles

* Bit-wise operators in C

» System calls

e Streams

* Files and File Systems

* Processes

* Threads



Byte-Level Representations and Pointers

* Variable values vs pointers to values
* Array vs a pointer

* Representation of primitive types
e char, Int, float

e Strings
* Null termination, strcpy() strcmp(),

» Structs (and pointers to structs)
* memset(), memcpy(), scanf()



Compiller, Linker, Makefile

* Distinction between compiler & linker
* What files do they take as input & generate as ouput

 Makefile

 What do the rules mean?
 Defining variables inside a Makefile



System Calls

e User mode vs kernel mode

» System calls: allow user program
to access kernel-level resources

» Switching from user to kernel
mode

 Table look-up for finding the right
kernel-level function to execute

« Switching always involves overhead
(more than a function call)

user application

open ()
user

)

mode

kernel

system call interface

mode

-

open ()

Implementation
of open ()
system call

return



Streams

Array of bytes

» Well defined beginning and ending

* Offset: the current point of access

« Read and write operations

* In some cases: can also seek )
current position

beginning end

A

rewind

—read or write =)



Files and the File System

* Directory hierarchy
» Absolute vs relative paths
« Current working directory

A file Is a stream that lives on a disk (or some other
storage)
* open(), close()

 read(), write()
* Iseek()

* File attributes

* FILE
« fopen(), printf(), fprintf(), scanf(), fscanf()



Processes

* Memory space of a process
« Heap vs stack

 Process states

admitted

I/O or event completion

interrupt

scheduler dispatch

I/O or event wait

max

stack

heap

data

text




Processes

Process control block:
 Kernel data structure

» Contains all of the information
required to manage the
process, including moving it
on/off the running state

process state

process number

program counter

registers

memory limits

list of open files




Threads

Minimal coverage of threads

* What Is the distinction between a process and a thread?
* Threads share memory (globals, heap), program spaces
* Threads have their own stack & registers



Preparing

* Make sure you understand these key concepts
* Lecture notes

» Assigned readings

* Quizzes

* We have also done many coding examples in class

* Review these: focus on the functionality (but keep careful notes
on syntax)

* Prior exams: see the prior classes section of my home
page



