OS Internals

Andrew H. Fagg
CS 3113

File Abstraction

What does a file represent?

File Abstraction

What does a file represent?

 Fundamental level: it Is a sequence of bytes
« Each byte has an address (0, 1, 2, ...)

» Sets of bytes might represent some value requiring
more space

Representing an Open File

Representing an Open File

Need to know:
 Where the file is located on the disk

* Which byte Is the current point of access
« Byte number (address) of the next access

 When we read a byte from the file, this value is returned
« And the point of access advances by one (increments)

* When we write a byte to the file, the new value is written to
the point of access

« And the point of access increments

Streams

Generalization of what we think of as a file: any
seguence of bytes

« Communication between processes
« Communication between computers

* Amodel for some I/O modes (USB, audio, video, shells)

* |[n unix, all communication of byte sequences is done through
streams

OS Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /O file communication o accountin
execution operations systems allocation g
error pro;icc:;uon
detection . security
services

operating system

hardware

Command Line Interface

Textual interface for user to interact with the system

* In some OSes, It Is a kernel component, in other OSes
It IS a system program

« Parses text input, which includes commands and
parameters and executes the command
* List a directory, create a file, etc.

« Some commands are built in, others are independent
executables

Command Line Interface

Most of you are used to graphical user interfaces (GUISs)

* A shell program is an implementation of a CLI
« Common In Linux today: bash shell

 CLIs existed long before GUIs
* GUIs generally provide access to a shell program

* With practice, one can often be much more efficient
working with a CLI than a GUI

Command Line Interface

Demo

User-Space Programs: Accessing
Resources

* A user-space program has a set of its own resources
Including the stack, heap and process state

 But, the program often needs to access resources that
are shared in some way with other programs

* |t is the job of the operating system to make this sharing
as safe as possible

Example: Copying a File

Copy all of the
bytes contained
within a file to a
file of a different
name

source file

>

destination file

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

4 Example System Call Sequence N

4

System Calls

* Programming interface to the services provided by the OS
» Typically written in C or C++

* Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

* Three most common APls are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this APl appears below:

#include <unistd.h>

ssize_t read(int fd, woid *buf, size t count)
I | | | | |
return function parameters
value name

A program that uses the read () function mustinclude the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read

® void *buf—a buffer where the data will be read into

* size-t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

14

System Call Process: All About Safety

* There is one common entry point for all system calls:
this is done through the sys call “trap” instruction

* Each system call is referenced using a unigue number
* Each has its own set of arguments to be transferred

* The trap instruction switches the processor state from
user to kernel mode

* The trap handler function then translates the sys call
number into an appropriate function call

user application

open ()
user
mode
system call interface
kernel
mode A
> open ()
Implementation
i » of open ()
. system call

return

Andrew H. Fagg: CS 3113

16

Passing Parameters to the Kernel Level

» Often, more information is required than simply the identity
of desired system call

« Exact type and amount of information vary according to OS and

the call

* Three general methods used to pass parameters to the OS
« Simplest: pass the parameters in registers

Parameters stored in a block, or table, in memory, and address of
plock passed as a parameter in a register

Parameters placed, or pushed, onto the stack by the program and

popped off the stack by the operating system

 Block and stack methods do not limit the number or length
of parameters being passed

Using the API

* All system calls from the API will return a value
Indicating success/status or an error
« See the system call’'s man page for details about the
meaning of the return value
*int errno IS a global variable that is set by the kernel
side of the system call to provide more details about any
error that has occurred
« Many system calls return -1 to indicate an error; then, you
can use errno to extract additional meaning

A variety of available functions will make it easy to
translate the error number into a textual description

System Calls for Process Control

» Create process, terminate process

 Load, execute

» Get process attributes, set process attributes
 Walit for time

» Walit event, signal event

* Allocate and free memory

* Dump memory if error

 Locks for managing access to shared data between
Drocesses

* Debugger for determining bugs, single step execution

System Calls for File Manipulation

* Create file, delete file

* Open, close file

* Read, write, reposition

» Get and set file attributes

System Calls for Device Management

* Request device, release device

* Read, write, reposition

» Get device attributes, set device attributes
* Logically attach or detach devices

System Calls for System Monitoring and
Control

» Get time or date, set time or date

» Get system data, set system data

» Get and set process, file, or device attributes
» Control access to resources

* Get and set permissions

 Allow and deny user access

System Calls for Communication

 Create, delete communication connection
* Send, receive messages to host name or process name

« Shared-memory model: create and gain access to
memory regions

* Transfer status information
e Attach and detach remote devices

Some System
Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess ()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()

Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit ()
wait ()

open()
read ()

write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown()

Libraries and
System Calls

Unix standard |/O library
(stdio) does not provide
system calls, but it does
call them

#include <stdio.h>

int main ()

{

- printf ("Greetings”); |-

return O;

standard C library

}
user
mode | L
kernel |
mode
write

p

()
e

== i -\-\"'\.

write ()

'a\% system call

)

xl"l
J

Example

* Single-task system

e At time of boot, lots of free
memory (a)

* Invoke a new program:
system call allocates the
necessary space in memory
and begins program
execution (b)

' MS-DOS

free memory

command
Interpreter

kernel

(a)

free memory

pProcess

command
interpreter

kernel

(b)

Example: FreeBSD

* Flavor of unix
» Multitasking

» Shell executes fork() system call to create
process
* Executes exec() to load program into process
 Shell walts for process to terminate or continues

with user commands
* Process exits with:
e code =0 —no error
e code > 0 — error code

process D

free memory

process C

Interpreter

process B

kernel

Example: Unix File Operations

A simple program:

* Open a file for writing
* Write an integer

* Write a string

* Close the file

open()

open (char * pathname, i1nt flags, mode t mode)

* pathname = path + file name to open
* flags = how to open the file
* mode = file permissions

* returns -1 on error
e or an integer file descriptor if successful

Opening a File

int fd = open("out.bin", O WRONLY | O CREAT | O TRUNC,
S IRUSR | S IWUSR);
1f(fd == -1) {
printf ("Error opening\n");

exit(-1);

write()

ssize t write(int fd, void * buf, size t count)
* fd = file descriptor of an open file

* buf = pointer to an array of bytes to send

e count = number of bytes to send

* Returns -1 on error
» Otherwise, the number of bytes sent

Writing to a File

// Write all bytes associated with the int

int value = 42;

1f(write (fd, &value, sizeof (int)) != sizeof(int)) {
printf ("Write error\n");

exit(-1);

Writing to a File

// Write a single character
char ¢ = "#';

1f(write(fd, &c, 1) !'= 1) {
printf ("Char write error\n");
exl1t (-1);

Demo

hexdump

Implementation of an OS

 Early days: assembly language

* Today: a variety of languages, depending on the tasks
 OS itself: C/ C++

« System programs can be implemented in: shell script, perl,
python

OS Code Structure

Choices depend on a lot of factors:
* History

* Required complexity

* Real-time vs not

* Memory constraints

* Types of tasks to be performed

MS-DOS

» Space constrained ‘ application program

 Monolithic
* Simple

resident system program ’

ROM BIOS device drivers ’

Andrew H. Fagg: CS 3113 37

» Complex

 Early implementations:
components not well
separated

Unix

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
N character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Andrew H. Fagg: CS 3113 38

Layered

* Inner layers closest to the
hardware

* One layer only depends on
the layer (or layers) below it

* Possible to test layers
k ... O before testing layer
k+1

Microkernel Architecture

* Move as much functionality into user space (even things
like the process scheduler)

* Makes the kernel space program small, lightweight and
easy to test

« Can be more secure than a monolithic kernel

» Challenge: user space system programs must use
system calls to perform kernel-level tasks (this is a lot
more expensive than executing a function).

Microkernel Architecture

Application File Device
Program System Driver

messages . - messages

CPU
scheduling

memory
managment

Interprocess
Communication

A microkernel A

hardware

user
mode

kernel
mode

Kernel Modules

* Many modern operating systems implement loadable
kernel modules
« Uses object-oriented approach
« Each core component is separate
« Each talks to the others over known interfaces
 Each Is loadable as needed within the kernel

* Overall, similar to layered approach, but more flexible
e Linux, Solaris, etc

Modular Kernels

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable

miscellaneous
system calls

modules

executable
formats

STREAMS
modules

Andrew H. Fagg: CS 3113

43

System Boot Process

* When power initialized on system, execution starts at a
fixed memory location
* Firmware ROM used to hold initial boot code

» Operating system must be made available to hardware so
hardware can start it

« Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

« Sometimes two-step process where boot block is at fixed location
loaded by ROM code, which loads bootstrap loader from disk

« Common bootstrap loader, GRUB, allows selection of
kernel from multiple disks, versions, kernel options

» Kernel loads and system is then running

Coming soon ...

* Writing programs in the unix environment

Andrew H. Fagg: CS 3113

46

Andrew H. Fagg: CS 3113

47

Creating Executable Programs

