
OS Internals
Andrew H. Fagg

CS 3113

File Abstraction

What does a file represent?

Andrew H. Fagg: CS 3113 2

File Abstraction

What does a file represent?

• Fundamental level: it is a sequence of bytes

• Each byte has an address (0, 1, 2, …)

• Sets of bytes might represent some value requiring
more space

Andrew H. Fagg: CS 3113 3

Representing an Open File

Andrew H. Fagg: CS 3113 4

Representing an Open File

Need to know:

• Where the file is located on the disk

• Which byte is the current point of access
• Byte number (address) of the next access

• When we read a byte from the file, this value is returned
• And the point of access advances by one (increments)

• When we write a byte to the file, the new value is written to
the point of access

• And the point of access increments

Andrew H. Fagg: CS 3113 5

Streams

Generalization of what we think of as a file: any
sequence of bytes

• Communication between processes

• Communication between computers

• A model for some I/O modes (USB, audio, video, shells)
• In unix, all communication of byte sequences is done through

streams

Andrew H. Fagg: CS 3113 6

OS Services

Andrew H. Fagg: CS 3113 7

Command Line Interface

Textual interface for user to interact with the system

• In some OSes, it is a kernel component, in other OSes
it is a system program

• Parses text input, which includes commands and
parameters and executes the command

• List a directory, create a file, etc.

• Some commands are built in, others are independent
executables

Andrew H. Fagg: CS 3113 8

Command Line Interface

Most of you are used to graphical user interfaces (GUIs)

• A shell program is an implementation of a CLI
• Common in Linux today: bash shell

• CLIs existed long before GUIs

• GUIs generally provide access to a shell program

• With practice, one can often be much more efficient
working with a CLI than a GUI

Andrew H. Fagg: CS 3113 9

Command Line Interface

Demo

Andrew H. Fagg: CS 3113 10

User-Space Programs: Accessing
Resources

• A user-space program has a set of its own resources
including the stack, heap and process state

• But, the program often needs to access resources that
are shared in some way with other programs

• It is the job of the operating system to make this sharing
as safe as possible

Andrew H. Fagg: CS 3113 11

Example: Copying a File

Copy all of the
bytes contained
within a file to a
file of a different
name

Andrew H. Fagg: CS 3113 12

System Calls

• Programming interface to the services provided by the OS

• Typically written in C or C++

• Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

• Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Andrew H. Fagg: CS 3113 13

Andrew H. Fagg: CS 3113 14

System Call Process: All About Safety

• There is one common entry point for all system calls:
this is done through the sys call “trap” instruction

• Each system call is referenced using a unique number

• Each has its own set of arguments to be transferred

• The trap instruction switches the processor state from
user to kernel mode

• The trap handler function then translates the sys call
number into an appropriate function call

Andrew H. Fagg: CS 3113 15

Andrew H. Fagg: CS 3113 16

Passing Parameters to the Kernel Level

• Often, more information is required than simply the identity
of desired system call

• Exact type and amount of information vary according to OS and
the call

• Three general methods used to pass parameters to the OS
• Simplest: pass the parameters in registers
• Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
• Parameters placed, or pushed, onto the stack by the program and

popped off the stack by the operating system

• Block and stack methods do not limit the number or length
of parameters being passed

Andrew H. Fagg: CS 3113 17

Using the API

• All system calls from the API will return a value
indicating success/status or an error

• See the system call’s man page for details about the
meaning of the return value

• int errno is a global variable that is set by the kernel
side of the system call to provide more details about any
error that has occurred

• Many system calls return -1 to indicate an error; then, you
can use errno to extract additional meaning

• A variety of available functions will make it easy to
translate the error number into a textual description

Andrew H. Fagg: CS 3113 18

System Calls for Process Control

• Create process, terminate process

• Load, execute

• Get process attributes, set process attributes

• Wait for time

• Wait event, signal event

• Allocate and free memory

• Dump memory if error

• Locks for managing access to shared data between
processes

• Debugger for determining bugs, single step execution
Andrew H. Fagg: CS 3113 19

System Calls for File Manipulation

• Create file, delete file

• Open, close file

• Read, write, reposition

• Get and set file attributes

Andrew H. Fagg: CS 3113 20

System Calls for Device Management

• Request device, release device

• Read, write, reposition

• Get device attributes, set device attributes

• Logically attach or detach devices

Andrew H. Fagg: CS 3113 21

System Calls for System Monitoring and
Control

• Get time or date, set time or date

• Get system data, set system data

• Get and set process, file, or device attributes

• Control access to resources

• Get and set permissions

• Allow and deny user access

Andrew H. Fagg: CS 3113 22

System Calls for Communication

• Create, delete communication connection

• Send, receive messages to host name or process name

• Shared-memory model: create and gain access to
memory regions

• Transfer status information

• Attach and detach remote devices

Andrew H. Fagg: CS 3113 23

Some System
Calls

Andrew H. Fagg: CS 3113 24

Libraries and
System Calls

Unix standard I/O library
(stdio) does not provide
system calls, but it does
call them

Andrew H. Fagg: CS 3113 25

Example: MS-DOS

• Single-task system

• At time of boot, lots of free
memory (a)

• Invoke a new program:
system call allocates the
necessary space in memory
and begins program
execution (b)

Andrew H. Fagg: CS 3113 26

Example: FreeBSD

• Flavor of unix

• Multitasking

• Shell executes fork() system call to create
process

• Executes exec() to load program into process

• Shell waits for process to terminate or continues
with user commands

• Process exits with:
• code = 0 – no error

• code > 0 – error code
Andrew H. Fagg: CS 3113 27

Example: Unix File Operations

A simple program:

• Open a file for writing

• Write an integer

• Write a string

• Close the file

Andrew H. Fagg: CS 3113 28

open()

open(char * pathname, int flags, mode_t mode)

• pathname = path + file name to open

• flags = how to open the file

• mode = file permissions

• returns -1 on error
• or an integer file descriptor if successful

Andrew H. Fagg: CS 3113 29

Opening a File

int fd = open("out.bin", O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR);

if(fd == -1) {

printf("Error opening\n");

exit(-1);

}

Andrew H. Fagg: CS 3113 30

write()

ssize_t write(int fd, void * buf, size_t count)

• fd = file descriptor of an open file

• buf = pointer to an array of bytes to send

• count = number of bytes to send

• Returns -1 on error
• Otherwise, the number of bytes sent

Andrew H. Fagg: CS 3113 31

Writing to a File

// Write all bytes associated with the int

int value = 42;

if(write(fd, &value, sizeof(int)) != sizeof(int)) {

printf("Write error\n");

exit(-1);

}

Andrew H. Fagg: CS 3113 32

Writing to a File

// Write a single character

char c = '#';

if(write(fd, &c, 1) != 1) {

printf("Char write error\n");

exit(-1);

}

Andrew H. Fagg: CS 3113 33

Demo

hexdump

Andrew H. Fagg: CS 3113 34

Implementation of an OS

• Early days: assembly language

• Today: a variety of languages, depending on the tasks
• OS itself: C / C++

• System programs can be implemented in: shell script, perl,
python

Andrew H. Fagg: CS 3113 35

OS Code Structure

Choices depend on a lot of factors:

• History

• Required complexity

• Real-time vs not

• Memory constraints

• Types of tasks to be performed

Andrew H. Fagg: CS 3113 36

MS-DOS

• Space constrained

• Monolithic

• Simple

Andrew H. Fagg: CS 3113 37

Unix

• Complex

• Early implementations:
components not well
separated

Andrew H. Fagg: CS 3113 38

Layered

• Inner layers closest to the
hardware

• One layer only depends on
the layer (or layers) below it

• Possible to test layers
k … 0 before testing layer
k+1

Andrew H. Fagg: CS 3113 39

Microkernel Architecture

• Move as much functionality into user space (even things
like the process scheduler)

• Makes the kernel space program small, lightweight and
easy to test

• Can be more secure than a monolithic kernel

• Challenge: user space system programs must use
system calls to perform kernel-level tasks (this is a lot
more expensive than executing a function).

Andrew H. Fagg: CS 3113 40

Microkernel Architecture

Andrew H. Fagg: CS 3113 41

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

Kernel Modules

• Many modern operating systems implement loadable
kernel modules

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

• Overall, similar to layered approach, but more flexible
• Linux, Solaris, etc

Andrew H. Fagg: CS 3113 42

Modular Kernels

Andrew H. Fagg: CS 3113 43

System Boot Process

• When power initialized on system, execution starts at a
fixed memory location

• Firmware ROM used to hold initial boot code

• Operating system must be made available to hardware so
hardware can start it

• Small piece of code – bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

• Sometimes two-step process where boot block is at fixed location
loaded by ROM code, which loads bootstrap loader from disk

• Common bootstrap loader, GRUB, allows selection of
kernel from multiple disks, versions, kernel options

• Kernel loads and system is then running
Andrew H. Fagg: CS 3113 44

Coming soon …

• Writing programs in the unix environment

Andrew H. Fagg: CS 3113 45

Andrew H. Fagg: CS 3113 46

Andrew H. Fagg: CS 3113 47

Creating Executable Programs

Andrew H. Fagg: CS 3113 48

