
Andrew H. Fagg: CS3113 1

What is my role?

Andrew H. Fagg: CS3113 2

What is my role?

Multi-faceted:

• Instructor

• Assessment

• Guide

Andrew H. Fagg: CS3113 3

What is your role?

Andrew H. Fagg: CS3113 4

What is your role?

• Absorb material so that the key ideas stay with you for a
long time

• Perform well in the assessments

Don’t be passive!

• Ask questions

• Do the reading and the work

• Challenge yourself

• Don’t be afraid to try things
• or throw out code

Andrew H. Fagg: CS3113 5

In the beginning…

Uniprocessors

• No real OS … (machine-
level) programs access
hardware directly

• Execute one program at
a time

• I/O very slow

• Program waits for I/O

Andrew H. Fagg: CS3113

americanhistory.si.edu

6

Uniprocessors

Imagine a program that must wait for every I/O operation

Andrew H. Fagg: CS3113

Read one record from file 15 µs

Execute 100 instructions 1 µs

Write one record to file 15 µs

TOTAL 31 µs

Percent CPU Utilization

=
1

31
= 0.032 = 3.2%

Figure 2.4 System Utilization Example

7

CPU Utilization with I/O Bound Programs

Andrew H. Fagg: CS3113

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

8

Multiprogramming

Andrew H. Fagg: CS3113

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

9

Multiprogramming

Andrew H. Fagg: CS3113

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

10

Multiprogramming

In order to get this to work, we must have:

• A way to figure out which job to switch to next

• The memory space to fit the jobs being executed

• A mechanism that performs the switching between the
jobs

These functions are provided by the OS

Andrew H. Fagg: CS3113 11

Processes

• A process is a program in execution:
• It is a unit of work within the system.

• Program is a passive entity, process is the active entity

• Process needs resources to accomplish its task
• CPU, memory, I/O, files

• OS manages these resources
• Process termination requires the OS to reclaim of any

reusable resources

Andrew H. Fagg: CS3113 12

Processes

• Single-threaded process has:
• One program counter specifying location of next instruction

to execute
• Process executes instructions sequentially, one at a time, until

completion

• One execution stack

• Typically a system has many processes
• Some user, some OS-related

• These are running concurrently on one or more CPUs

Andrew H. Fagg: CS3113 13

Multi-Threading

Even more complicated systems support multi-threaded
processes: a process has one program counter per
thread

• Allows execution of many closely-linked tasks in parallel

Andrew H. Fagg: CS3113 14

Process Management Activities

The OS is responsible for:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Scheduling processes to have access to resources,
including the CPU

• Providing mechanisms for process synchronization and
deadlock handling

• Providing mechanisms for process communication

Andrew H. Fagg: CS3113 15

Making Efficient Use of a CPU

• Multiprogramming:
• Switch between processes as CPU becomes idle (e.g., if a

process is waiting for I/O)
• Scheduling processes is relatively straight-forward

• Multitasking:
• Switch quickly between processes automatically

• Processes have a fixed upper bound of time before needed to wait

• Allows processes to appear like they are responding in real
time (at least to a user)

• Scheduling processes and their memory use is a challenge

Andrew H. Fagg: CS3113 16

Protection with Processor Modes

Dual-mode operation allows the OS to protect itself and
other system components

• Mode bit provided in the hardware:
• User mode and kernel mode

• Provides ability to distinguish when system is running
user code versus kernel code

• Some instructions designated as privileged and can
only be executed in kernel mode

• Some hardware can only be manipulated in privileged
mode Andrew H. Fagg: CS3113 17

Protection with Processor Modes
• System calls change mode from user to kernel

• Allow safe manipulation of kernel data structures and
hardware

• Return from call resets mode to user

• Increasingly, CPUs support multi-mode operations
• For example: virtual machine manager (VMM) mode for

guest VMs

Andrew H. Fagg: CS3113 18

System Calls

System calls allow a user program to request services
from the kernel

• Including I/O and process management services

Andrew H. Fagg: CS3113 19

Computer System Organization

Common bus structure:

• One or more CPUs, device controllers connect through
a common bus that provides access to shared memory

• Concurrent execution of CPUs and devices
• All can compete for memory cycles

Andrew H. Fagg: CS3113 20

Computer-System Operation

I/O devices and the CPU execute concurrently

• Each device controller is in charge of a particular device

• Data sent to or received from the device are stored in a local buffer

• CPU moves data between these local buffers and main memory

• When a device controller completes an I/O operation, it informs the CPU
by causing an interrupt

Andrew H. Fagg: CS3113 21

Interrupts

An operating system is interrupt driven

• An interrupt transfers control from the currently executing
program to the appropriate interrupt service routine

• Interrupt architecture must save the address of the interrupted
instruction, as well as the state of the registers

• A trap or exception is a software-generated interrupt caused
either by an error or a user request

Andrew H. Fagg: CS3113 22

Interrupt Timeline for I/O

Andrew H. Fagg: CS3113 23

I/O Structure

• User program does not have direct access to the
devices (it is prevented explicitly!)

• Instead, a request for access is made to the OS through
the use of a system call

• Special function that is able to access the kernel-level data
structures and I/O system

• After I/O starts, control returns to user program without
waiting for I/O completion

Andrew H. Fagg: CS3113 24

Andrew H. Fagg: CS3113 25

Storage Definitions

Andrew H. Fagg: CS3113 26

Storage Definitions

• Bit: contains a value of 0 or 1

• Byte: 8-bits. Fundamental unit of memory

• Word: multiple bytes (system dependent)
• In modern laptops: 8 bytes

• 2^10 bytes: kilobyte

• 2^20 bytes: megabyte

• 2^30 bytes: gigabyte

• 2^40 bytes: terabyte

Andrew H. Fagg: CS3113 27

Storage Types

Andrew H. Fagg: CS3113 28

Storage Types (some)

• Main memory – only large storage media that the CPU can access directly
• Random access, typically volatile

• Secondary storage – extension of main memory that provides large
nonvolatile storage capacity

• Hard disks – rigid metal or glass platters covered with magnetic recording material

• Disk surface is logically divided into tracks, which are subdivided into sectors

• Solid-state disks – faster than hard disks, nonvolatile
• Various technologies

• Expensive relative to hard disks

Andrew H. Fagg: CS3113 29

Performance of Various Levels of
Storage

Andrew H. Fagg: CS3113 30

Storage-Device Hierarchy

Andrew H. Fagg: CS3113 31

Storage Hierarchy

• Storage systems organized in hierarchy. Each level
involves trade-offs:

• Speed

• Cost

• Volatility

• Caching – copying information into faster storage
system

• Allows faster access to and alterations of data

• Main memory can be viewed as a cache for secondary
storage

Andrew H. Fagg: CS3113 32

Caching

Information in use copied from slower to faster storage
temporarily

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

• Faster storage (cache) checked first to determine if
information is there

• If it is, information used directly from the cache (fast)

• If not, data copied to cache and used from there

• Cache management is an important design choice
• Including: cache size and replacement policy

Andrew H. Fagg: CS3113 33

Direct Memory Access

• Used for high-speed I/O devices able to transmit
information at close to memory speeds

• Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention

• Only one interrupt is generated per block, rather than
the one interrupt per byte

Andrew H. Fagg: CS3113 34

Data Flow in a Modern Computer

Andrew H. Fagg: CS3113 35

Computer-System Architecture
• 15 years ago: most systems used a single general-purpose

processor
• Most systems (even today) also have special-purpose processors

• Multiprocessor systems have grown in use and importance
• Also known as parallel systems, tightly-coupled systems

• Advantages include:
• Increased throughput

• Economy of scale

• Increased reliability – graceful degradation or fault tolerance

• Two types:
• Asymmetric Multiprocessing – each processor performs specialized tasks

• Symmetric Multiprocessing – each processor performs all tasks

Andrew H. Fagg: CS3113 36

Multiprocessing Architectures

Andrew H. Fagg: CS3113

Symmetric Multiprocessor:
loosely coupled, multiple chips

Multi-Core Processors:
tightly coupled, single chip

37

Clusters

Cluster: large number of coordinated computers

• Programs can execute in parallel across multiple
computers

• Number of computers can scale with demand

• High Performance Computing (HPC) clusters: 1000s of nodes

• A single computer can potentially be used by many
programs

• More efficient use of hardware

• Provides redundancy in the face of hardware failure
Andrew H. Fagg: CS3113 38

Storage Management
• OS provides uniform, logical view of information storage

• Abstracts physical properties to logical storage unit
• These physical properties include: access speed, capacity, data-

transfer rate, access method (sequential or random)

• File-System management
• Files usually organized into directories
• Access control on most systems to determine who can access

what
• OS activities include

• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media
Andrew H. Fagg: CS3113 39

Memory Management

• To execute a program all (or part) of the instructions
must be in memory

• All (or part) of the data that is needed by the program
must be in memory.

• Memory management determines what is brought into
memory and when

• Optimizing CPU utilization and computer response to users

Andrew H. Fagg: CS3113 40

Memory Management Task

• Keeping track of which parts of memory are currently
being used and by whom

• Deciding which processes (or parts thereof) and data to
move into and out of memory

• Allocating and deallocating memory space, as needed

Andrew H. Fagg: CS3113 41

Protection and Security

• Protection – any mechanism for controlling access of
processes or users to resources defined by the OS

• Security – defense of the system against internal and
external attacks

• Huge range, including denial-of-service, worms, viruses,
identity theft, theft of service

Andrew H. Fagg: CS3113 42

Protection and Security

Systems generally first distinguish among users, to
determine who can do what

• User identities (user IDs, security IDs) include name and
associated number, one per user

• User ID then associated with all files, processes of that user
to determine access control

• Group identifier (group ID) allows set of users to be defined
and controls managed, then also associated with each
process, file

• Privilege escalation allows user to change to effective ID
with more rights

Andrew H. Fagg: CS3113 43

Kernel-Level Data Structures

Requirements

• Space efficient

• Time efficient
• Many data structures exist over the lifetime of the system

• Queries and s mall changes to the data structure must be
quick

• Secure
• Manipulated only in kernel mode

• Changes must leave the data structure in a proper state

Andrew H. Fagg: CS3113 44

Kernel Data Structures

• Singly linked list

• Doubly linked list

• Circular linked list

Andrew H. Fagg: CS3113 45

Kernel Data Structures

• Linear list
• Search performance is O(n)

• Binary search tree
left <= right

• Balanced binary search tree
access is O(lg n)

Andrew H. Fagg: CS3113 46

Kernel Data Structures

• Hash functions:
• Translate some many-byte data structure into a short hash

value

• Small changes in the data structure mean substantial
changes in the hashed value

• These are typically one-way functions!

• Hash maps:
• Associate a hash value with some other data structure

• O(1) lookup and storage

• Hash table must be large relative to the number of items
stored

Andrew H. Fagg: CS3113 47

Kernel Data Structures

Bitmaps

• A word is composed of k bits

• If we need to store a set of Boolean values, we can map
each to one of these bits

• Example: allocation table for k blocks on a hard disk
• Each bit indicates whether the corresponding block is used

by a file or is free to be allocated to new files

• 0xC7: blocks 3, 4 and 5 are free to be used

Andrew H. Fagg: CS3113 48

Kernel Data Structures

In Linux (and other OSes), these data structures types
are modularly implemented

• Used by different OS components

• Satisfy security requirements (hopefully)

• Well tested and debugged (hopefully)

Andrew H. Fagg: CS3113 49

Distributed Computing

• Collection of separate, possibly heterogeneous,
systems networked together

• Goals: achieve the illusion of a single system

• Network is a communications path, TCP/IP most
common protocol

• Local Area Network (LAN)

• Wide Area Network (WAN)

• Metropolitan Area Network (MAN)

• Personal Area Network (PAN)

Andrew H. Fagg: CS3113 50

Client-Server Computing

Remote server provides some service to many different
clients

• File system: storage and retrieval of files

• Database

• Map services

• Image recognition

• Messaging

Andrew H. Fagg: CS3113 51

Peer-to-Peer Systems

P2P does not distinguish clients and servers

• All nodes are considered peers

• May each act as client, server or both

• Node must join P2P network
• Registers its service with central lookup service on network, or

• Broadcast request for service and respond to requests for service
via discovery protocol

• Examples include Napster and Gnutella, Voice over IP
(VoIP) such as Skype

Andrew H. Fagg: CS3113 52

Virtualization
• Allows operating systems to run applications within other

OSes

• Vast and growing industry

• Emulation used when source CPU type different from
target type (i.e. PowerPC to Intel x86)

• Generally slowest method
• When computer language not compiled to native code,

Interpretation is required

• Virtualization: OS natively compiled for CPU, running
guest OSes that are also natively compiled

• VMware running WinXP guests, each running applications, all on
native WinXP host OS

• VMM (virtual machine Manager) provides virtualization services
Andrew H. Fagg: CS3113 53

Virtualization

• Use cases involve laptops and desktops running multiple
OSes for exploration or compatibility

• Apple laptop running Mac OS X host, Windows as a guest
• Developing apps for multiple OSes without having multiple

systems
• QA testing applications without having multiple systems
• Executing and managing compute environments within data

centers

• VMM can run natively, in which case they are also the host
• There is no general purpose host then (VMware ESX and Citrix

XenServer)

Andrew H. Fagg: CS3113 54

Virtualization

Andrew H. Fagg: CS3113 55

Cloud Computing

• Delivers computing, storage, even apps as a service
across a network

• Logical extension of virtualization because it uses
virtualization as the base for its functionality

• Amazon EC2 has thousands of servers, millions of
virtual machines, petabytes of storage available across
the Internet

• Users pay based on usage

Andrew H. Fagg: CS3113 56

Cloud Computing: Many Types

• Public cloud – available via Internet to anyone willing to pay

• Private cloud – run by a company for the company’s own use

• Hybrid cloud – includes both public and private cloud components

• Software as a Service (SaaS) – one or more applications available
via the Internet (i.e., word processor)

• Platform as a Service (PaaS) – software stack ready for
application use via the Internet (i.e., a database server)

• Infrastructure as a Service (IaaS) – servers or storage available
over Internet (i.e., storage available for backup use)

Andrew H. Fagg: CS3113 57

Cloud Computing

• Cloud computing environments
composed of traditional OSes,
plus VMMs, plus cloud
management tools

• Internet connectivity requires
security like firewalls

• Load balancers spread traffic
and load across multiple
machines

Andrew H. Fagg: CS3113 58

Real-Time Embedded Systems

• Real-time embedded systems are the most prevalent
form of computers

• Vary considerably, special purpose, limited purpose OS
• Real-time OS
• Use expanding

• Many other special computing environments as well
• Some have OSes, some perform tasks without an OS

• Real-time OS has well-defined fixed time constraints
• Processing must be done within constraint
• Correct operation only if constraints met

Andrew H. Fagg: CS3113 59

Open Source Operating Systems

Full source code is available for some OSes

• Individuals can make changes to the source & build
their own OS version

• These changes can be integrated back to the main
distribution

• Many “eyes” on the source code: improve quality of the
code

• Just discovered at Def Con (last week): malicious code was
inserted into Linux component that allows administrator-level
privileges under certain conditions

Andrew H. Fagg: CS3113 60

Next Week

Practicalities of writing and executing code

• System calls for I/O

• Linux environment

• Writing and compiling code

• Low-level data representation in C

Andrew H. Fagg: CS3113 61

