Processes

CS 3113

Processes

* Program Is passive entity stored on disk (executable
file), process Is active

* Program becomes process when executable file loaded into
memory

« Execution of program started via GUI mouse clicks,
command line entry of its name, etc

* One program can be several processes
« Consider multiple users executing the same program

max

Processes and Memory

On process creation, the process Is
effectively given its own memory space

 Text: storage of code

 Data: global variables (preallocated
space)

* Heap: dynamically allocated space
 Stack: local variable storage

stack

heap

data

text

Stack and Heap

» Stack grows downward with each nested function call
 Local variables, register state, return memory address

* Heap

« Storage of dynamically allocated items that must be
persistent across function calls (and returns from function
calls)

* OOP languages: object instantiation is done in the heap

Process State

A process Is In exactly one state at any instant in time:
*new: The process is being created

*running: Instructions are being executed by the CPU

e waliting: The process is waliting for some event to occur

*ready: The process Is waiting to be assigned to a
processor

* terminated: The process has finished execution

Process State

o admitted interrupt exit

scheduler dispatch

Andrew H. Fagg: Introduction to Operating Systems

I/O or event completion I/O or event walit

Kernel Data Structure: Process Control Block

Stores information about the running process state

Process. process number

* Process state — running, waiting, etc program counter

* Program counter — location of ——
Instruction to next execute

* CPU reqisters — contents of all process- memory limits
centric registers list of open files

* CPU scheduling information- priorities, Sie e

scheduling queue pointers

Kernel Data Structure: Process Control Block

continued: process state
* Memory-management information — ST T
memory allocated to the process program counter
« Accounting information — CPU used, o
clock time elapsed since start, time
limits memory limits
* |/O status information — I/O devices list of open files

allocated to process, list of open files

CPU Switching from One Process to Another

process P, operating system process P,

interrupt or system call

executing -L / l
5_ ™
h save state into PCB,
: ~idle
reload state from PCB, 1 /
-idle interrupt or system call executing
l \ w -\
save state into PCB;,
: > idle
) reload state from PCB, y
executing | _\
L4

long state;

Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */

/* state of the process */

unsigned int time slice /* scheduling information */
task struct *parent; /* this process’ s parent */
list head children; /* this process s children */
files struct *files; /* list of open files */

struct
struct
struct
struct

mm_stguct *mm; /* address space of this process */

'

struct task_struct
process information

R WA

struct task_struct
process information

"

f

current

struct task_struct
process information

S RS

(currently executing proccess)

Process Scheduling

* Our goals are to:
« Maximize CPU use
* Give processes the CPU time that they need

* Process scheduler selects among available processes
for next execution on CPU

Process Scheduler

Maintains scheduling gueues of processes
* Job queue: set of all processes In the system

* Ready queue: set of all processes residing in main
memory, ready and waiting to execute

* Device queues: set of processes waiting for an |1/O
device

* Processes migrate among the various queues,
depending (in part) on their state

Andrew H. Fagg: Introduction to Operating Systems

Ready Queue And Various I/O Device Queues

queue header PCB, PCB,
ready head > > —=
queue tail registers registers
mag | _ﬂ_/
tape , -
unit 0 tal =
mag head +——=

tape PCB, PCB,, PCB,

unit 1 tal =
/ —_— —

disk head
unit 0 tail

iH

terminal head —T—> ™=

unit 0 L

Process Scheduling

Queueing diagram represents gueues, resources, flows

| ready queue CPU g
/O queue *=—— |/O request —
time slice PR
expired

interrupt wait for an
OCCUrs interrupt

child fork a
@ child)
& *

Scheduler Components

Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU

« Sometimes the only scheduler in a system

« Short-term scheduler is invoked frequently (milliseconds),
SO it must be fast

Scheduler Components

Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

» Long-term scheduler Is invoked Iinfrequently (seconds,
minutes), so it may respond slowly

* The long-term scheduler controls the degree of
multiprogramming

* Most important in (older) resource-bound systems

Scheduler Components

Processes can be described as either:

* |/O-bound: spends more time doing I/O than
computations, many short CPU bursts

* CPU-bound: spends more time doing computations;
few very long CPU bursts

* Long-term scheduler strives for good process mix
« Goal: keep both I/O and CPU resources as busy as possible

Medium Term Scheduling

Medium-term scheduler can be added if degree of
multiple programming needs to decrease

 Remove process temporarily from memory, store on
disk, bring back in from disk to continue execution:
swapping

swap in partially executed swap out
swapped-out processes

: ready queue @L » end

I/O waiting
. Fagg: Introdiiction to%%%ﬁr?g System

(%]

Multitasking in Mobile Systems

* Some mobile systems (e.g., early version of iI0S) allow only
one process to run; others are suspended

* Due to screen real estate and user interface limits, 10S
provides for:
* Single foreground process: controlled via user interface

* Multiple background processes: in memory, running, but not on
the display, and with limits

 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

* Android runs foreground and background processes, with
fewer limits

Context Switching

 When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

» Context of a process represented in the PCB

» Context-switch time Is overhead; the system does no
useful work while switching

* The more complex the OS and the PCB, the longer the
context switch

* Time IS dependent on hardware support

« Some hardware provides multiple sets of registers per CPU
 Allows multiple contexts to be loaded at once

Operations on Processes

Process Creation

* Parent process creates child processes, which, in turn
create other processes, forming a tree of processes

» Generally, process identified and managed via a
process identifier (pid)

Andrew H. Fagg: Introduction to Operating Systems

Process Creation

* Resource sharing options
« Parent and children share all resources
« Children share subset of parent’ s resources
« Parent and child share no resources

» EXecution options
« Parent and children execute concurrently
« Parent waits until children terminate

Process Tree

init
pid =1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

bash pdflush sshd
pid = 8416 pid = 200 pid = 3610
ps emacs tesch

pid = 9298 pid = 9204 pid = 4005

Process Creation (Cont.)

» Address space
 Child duplicate of parent
 Child then has a program loaded Into it

* UNIX examples
« fork() system call creates new process

» exec() system call used after a fork() to replace the process’
memory space with a new program

parent ; resumes
walit 5

fork live demo

Andrew H. Fagg: Introduction to Operating Systems

fork()

fork() creates an identical process to the one that called fork()
e Same program

« Same state, including open file descriptors

» Exception: fork() returns O to the child; and a positive integer
to the parent

* Processes execute in parallel

child exec() »

parent : resumes
walit o

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

C Program Forking a i ==0
Child Process PR

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0;

Live execlp() demo

Andrew H. Fagg: Introduction to Operating Systems

execlp

execlp (char *command, char *argv0O, char *argvl, .. NULL)

* Replaces the currently executing program with a new
program & begins execution

« command Is a string that references an executable file
« Can be absolute or relative path

* Relative path: use the path environment variable to find the
executable

« argv0, argv1, ... are arguments to be passed to the
executable

» Don’t forget the NULL at the end!

execlp

execlp (char *command, char *argv0O, char *argvl, .. NULL)

* |f this function Is successful in finding the specified
executable, it does not return!

system()

system (char *command)

« Command specifies the executable and arguments in
one string

» Relative path: looks up the executable in the path
environment variable

« First calls fork(), then execlp()

» Always returns
« Return value Is the exit code from the specified command

Live system() demonstration

Process Termination

Process executes last statement and then asks the
operating system to delete it using the exit() system call.

» exit(-1): -1 is the exit code returned by the process

 Status data from child can be passed to the parent
*pid = wait(&status);
e status contains information about the reason for termination

* Process’ resources are deallocated by operating system

Process Termination

Some operating systems do not allow child processes to
exist If its parent has terminated (including Linux). If a
process terminates, then all its children must also be

terminated.

* If parent Is executing, but not waiting (did not invoke
wait ()) and the child process ends, then the child

process is a zombie
* |f parent terminated without invoking wait(), the child

process Is an orphan
« Orphans become children of the init process

Cooperating Processes

* Independent process cannot affect or be affected by
the execution of another process

« Cooperating process can affect or be affected by the
execution of another process

» Advantages of process cooperation
* Information sharing
« Computation speed-up
* Modularity
« Convenience

Multiprocess Architecture — Chrome
Browser

Many web browsers ran as single process (some still do)

 If one web site causes trouble, the entire browser can
hang or crash

Multiprocess Architecture — Chrome
Browser

Google Chrome Browser is multiprocess with 3 different types of
processes:

* Browser process manages user interface, disk and network 1/O

* Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

* Runs in sandbox restricting disk and network 1/0O, minimizing effect of
security exploits

* Plug-in process for each type of plug-in

mmn =
A @Wiley::{)perating System Ci AX BBC - Homepage E The Mew York Times - Brea "‘ Google Chraome - The web

!(- < C O W.guogle.cwroﬂef -1-'.I_."er._."|m1*_.“dDwnload-mac.lnn1|-”|:|fand-¢ﬂé /' *N "

| ¢ chrome md Features / English vy

|
| Each tab represents a separate process

Interprocess Communication

« Cooperating processes need interprocess
communication (IPC)

* Two models of IPC
 Shared memory
 Message passing

Andrew H. Fagg: Introduction to Operating Systems

Communication Models

Message Passing Shared Memory

process A process A

process B

— shared memory 4—‘

process B

message queue
—> M| M1 | Mo M3 ... |M |«

kernel

kernel

(a) (b)

Andrew H. Fagg: Introduction to Operating Systems

Producer-Consumer Problem

* Producer: process generates data through some
mechanism

« Consumer: process uses data generated by another

Producer-Consumer Problem

Typical approach: implement a data buffer from the
producer to the consumer

* unbounded-buffer places no practical limit on the size of
the buffer

* bounded-buffer assumes that there iIs a fixed buffer size

Andrew H. Fagg: Introduction to Operating Systems

Circular/Shared Buffer of Items
* tems are instances of type item

#define BUFFER SIZE 10
typedef struct {

} i1tem;
item buffer [BUFFER_SIZE] ;

int in = 0;
int out = 0;

* In = the next location to place a new item
 out = the next location to remove an item from

* Both the producer and consumer processes have
access to this buffer

Circular/Shared Buffer of Iltems

* INn == out: no items In the buffer
* (in+1)%BUFFER_SIZE = out: buffer is full

Circular Buffer: Producer

1tem next produced;
while (true)

/* produce an item in next produced */

while (((1n + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next produced; // Copy item

in = (in + 1) % BUFFER SIZE;

Circular Buffer: Consumer

1tem next consumed;
while (true)

while (1n == out)

; /* do nothing */
next consumed = buffer|out];
out = (out + 1) % BUFFER SIZE;

/* consume the i1tem 1n next consumed */

Shared Memory

» Shared memory: an area of memory shared among the
processes that wish to communicate

* The communication is entirely under the control of the
users processes not the operating system
» Good for efficiency
* Lots of opportunities for bugs

* Major issues Is to provide mechanism that will allow the
user processes to synchronize their actions when they
access the shared memory

Interprocess Communication:
Message Passing

Mechanism for processes to communicate and to
synchronize their actions

* Message system: processes communicate with each
other without resorting to shared variables

* |PC faclility provides two operations:
* send(message)
* receive(message)

* The message size Is either fixed or variable

Message Passing

* If processes P and Q wish to communicate, they need
to:
 Establish a communication link between them
* Exchange messages via send/receive

* Implementation issues:
* How are links established?
« Can a link be associated with more than two processes?

* How many links can there be between every pair of
communicating processes?

* What is the capacity of a link? (buffer)

* |s the size of a message that the link can accommodate fixed
or variable?

e |s a link unidirectional or bi-directional?

Message Passing

* Implementation of communication link
 Physical:
e Shared memory
« Hardware bus
* Network
* Logical:
 Direct or indirect
e Synchronous or asynchronous
« Automatic or explicit buffering

Direct Communication Model

* Processes must name each other explicitly:
* send (P, message): send a message to process P
* receive(Q, message): receive a message from process Q

* Properties of communication link
* Links are established automatically

* Alink Is associated with exactly one pair of communicating
processes

* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional

Indirect Communication Model

* Messages are directed and received from mailboxes
(also referred to as ports)
« Each mailbox has a unique id
* Processes can communicate only if they share a mailbox

* Properties of communication link
* Link established only if processes share a common mailbox
* Alink may be associated with many processes

» Each pair of processes may share several communication
links

 Link may be unidirectional or bi-directional

Indirect Communication

* Operations
e create a new mailbox (port)
« send and receive messages through mailbox
 destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Mailbox Sharing

e Scenario
* P,, P,, and P; share mailbox A
* P,, sends; P, and P, receive
* Who gets the message?

* Solutions
 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive
operation

* Allow the system to select arbitrarily the receiver. Sender Is
notified who the receiver was.

Synchronization

* Message passing may be either blocking or non-
blocking

* Blocking is considered synchronous

 Blocking send: the sender Is blocked until the message is
received

* Blocking receive: the receiver is blocked until a message Is
available

Synchronization

* Non-blocking Is considered asynchronous

* Non-blocking send: the sender sends the message and
continues

* Non-blocking receive: the receiver receives:
- Avalid message, or
* Null message

* Different combinations possible

* If both send and receive are blocking, we have a
rendezvous

Synchronization with Rendezvous

Producer-consumer becomes trivial

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

}

message next consumed;
while (true)
recelve (next consumed) ;

/* consume the item in next consumed */

Buffering

* Queue of messages attached to the link

* Implemented in one of three ways:

« Zero capacity: no messages are gueued on a link.
Sender must wait for receiver (rendezvous)

* Bounded capacity: finite length of n messages
Sender must wait if link full

« Unbounded capacity: infinite length
Sender never waits

Shared Memory In POSIX (includes Linux)

* Process first creates shared memory segment (or opens an
existing one):
shm fd = shm open(name, O CREAT | O RDWR, 06660);

 Set the size of the object:
ftruncate (shm fd, 40906);

 Create a pointer to the shared memory:
mmap (shm fd, 0, 40960 PROT WRITE, MAP SHARED, shm fd, 0);

* Now the process can write to the shared memory
sprintf (shared memory, "Writing to shared memory");

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
are el I lO ry #include <sys/shm.h>

#include <sys/stat.h>

Producer S

/* the size (in bytes) of shared memory object */
const int SIZE = 4086;

/* name of the shared memory object */

const char *name = "[QS";

/* strings written to shared memory */

const char *message.Q0 = "Hello";

const char *message.l = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr,"s" ,message_1);

ptr += strlen(message 1);

Andrew H. Fagg: Introduction to Operating Systen return 0;

#include <stdio.h>
#include <stdlib.h>

Shared Memory s <eeerii o

#include <sys/stat.h>

consumer —

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;
/* name of the shared memory object */

const char *name = "(QS";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, 0_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink (name) ;

return 0;
Andrew H. Fagg: Introduction to Operz}

Client-Server Model of Communication

* Built on top of Producer/Consumer
» Server: provides some service (data, computation)
* Client: requests actions on the part of the server

* Implementation choices include:
« Sockets

* Pipes

 Remote Procedure Calls

 Remote Method Invocation (Java)

Sockets

A socket Is defined as an endpoint for communication

- Identified by a concatenation of IP address and port: a
number included at start of message packet to differentiate
network services on a host

* The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

« Communication consists between a pair of sockets

* All ports below 1024 are well known and are used for
standard services

» Special IP address 127.0.0.1 (loopback) to refer to system
on which process is running

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Remote Procedure Calls

* From the programmer’s perspective, they appear as
functions/methods that take arguments and return a
value

« Under the hood, this function call:
« Contacts a server
« Sends the arguments to the server
« Server does the work and sends the result back
* Return the return value back to the client

Pipes

* Act as a conduit allowing two processes to
communicate

* [Sssues:
 |s communication unidirectional or bidirectional?
* In the case of two-way communication, is it half or full-
duplex?
* Must there exist a relationship (i.e., parent-child) between the
communicating processes?

« Can the pipes be used over a network?

Pipes

* Ordinary pipes: cannot be accessed from outside the
process that created It.
 Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

* Named pipes: can be accessed without a parent-child
relationship.

Ordinary Pipes

Ordinary Pipes allow communication in standard
producer-consumer style

* Producer writes to one end (the write-end of the pipe)

* Consumer reads from the other end (the read-end of the
pipe)
* Ordinary pipes are therefore unidirectional

Ordinary Pipe

int fds[2];

int ret = pipe(fds
1f(ret < 0) exit (

// Now use the pipe

* fds[O]:
e fds[1]:

output from pipe
Input to pipe

Andrew H. Fagg: Intro

duction to

Operat

s [

£fds[O0]

ing Systems

fds[1]

Ordinary Pipes for Communication

* The pipe Is Implemented inside the kernel (so, It does
not exist within the process)

* However, the process maintains this pair of file
descriptors, which allow it to reference the pipe

Ordinary Pipes for Communication

* The file descriptors cannot be shared outside of the
process

 But: If the process forks(), then both the parent and child
will have copies of the file descriptors!
* And these reference the same pipe

Ordinary Pipe with Fork()

int fds[2];

int ret = pipe(fds);

1f (ret < 0) exit(-1);

// Now use the pipe

int pid = fork ()

1f (pid > 0) { // Note: leaving off error case
// parent code

telse |
// child code

Before Fork

i
Parent processes
fds[O] fds[1]

Andrew H. Fagg: Introduction to Operating Systems

After Fork

fds[0] fds[1]

Child processes J
Kernel
Parent processes
fds[0] fds[1]

Andrew H. Fagg: Introduction to Operating Systems

Pipes

For our purposes, we will assume:

* Pipes will only work properly with on reader and one
writer (this Is the typical use case)

* This means, after the fork, each of the parent and child
will close one of the two file descriptors

After Fork: Parent is the Producer

fds[0] fds[1]

Child processes :\j|<
Kernel

Parent processes

fds[0] fds[1]

Andrew H. Fagg: Introduction to Operating Systems

After Fork: Parent is the Producer

fds[0] fds[1]

Child processes

Kernel

Parent processes
fds[O] fds[1]

Andrew H. Fagg: Introduction to Operating Systems

After Fork: Parent is the Producer

// Now use the pipe

int pid = fork()

1f (pld > 0) | // Note: leaving off error case
// parent code
close (fds[0])

telse {
// child code
close(fds|[1])

After Fork: Parent Is the Producer

After fork and closing:
« Parent can write bytes to fds[1]
 Child can read these bytes from fds|O]

After Fork: Parent Is the Producer

* The pipe has a buffer: it will hold written bytes until they
are read

* If the writer closes the pipe, then
* The reader gets to read the remaining bytes
 But then will see an EOF

* Windows calls ordinary pipes anonymous pipes

Pipe demos

Andrew H. Fagg: Introduction to Operating Systems

Named Pipes

Named Pipes are more powerful than ordinary pipes
« Communication can be bidirectional

* No parent-child relationship is necessary between the
communicating processes

» Several processes can use the named pipe for
communication

* Provided on both UNIX and Windows systems

Named Pipes in Unix

» Access points exist In the file system
« Open them just as you would a file!
» Use read()/write() to receive/send data

« Can have multiple readers/writers
A message is delivered to one randomly selected reader
» S0, effectively, they are bidirectional
 However, we will use them as unidirectional pipes

 Create at the command line (or programmatically):
mkfifo [NAME]

* Quick named pipe demo

