
Processes
CS 3113

Processes

• Program is passive entity stored on disk (executable
file), process is active

• Program becomes process when executable file loaded into
memory

• Execution of program started via GUI mouse clicks,
command line entry of its name, etc

• One program can be several processes
• Consider multiple users executing the same program

Andrew H. Fagg: Introduction to Operating Systems

Processes and Memory

CG and AHF: Introduction to Operating Systems: Make Files

On process creation, the process is
effectively given its own memory space

• Text: storage of code

• Data: global variables (preallocated
space)

• Heap: dynamically allocated space

• Stack: local variable storage

Stack and Heap

• Stack grows downward with each nested function call
• Local variables, register state, return memory address

• Heap
• Storage of dynamically allocated items that must be

persistent across function calls (and returns from function
calls)

• OOP languages: object instantiation is done in the heap

CG and AHF: Introduction to Operating Systems: Make Files

Process State

A process is in exactly one state at any instant in time:

• new: The process is being created

• running: Instructions are being executed by the CPU

• waiting: The process is waiting for some event to occur

• ready: The process is waiting to be assigned to a
processor

• terminated: The process has finished execution

Andrew H. Fagg: Introduction to Operating Systems

Process State

Andrew H. Fagg: Introduction to Operating Systems

Kernel Data Structure: Process Control Block

Stores information about the running
process:

• Process state – running, waiting, etc

• Program counter – location of
instruction to next execute

• CPU registers – contents of all process-
centric registers

• CPU scheduling information- priorities,
scheduling queue pointers

Andrew H. Fagg: Introduction to Operating Systems

Kernel Data Structure: Process Control Block

continued:

• Memory-management information –
memory allocated to the process

• Accounting information – CPU used,
clock time elapsed since start, time
limits

• I/O status information – I/O devices
allocated to process, list of open files

Andrew H. Fagg: Introduction to Operating Systems

CPU Switching from One Process to Another

Andrew H. Fagg: Introduction to Operating Systems

Process Representation in Linux

Andrew H. Fagg: Introduction to Operating Systems

Represented by the C structure task_struct
pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Process Scheduling

• Our goals are to:
• Maximize CPU use

• Give processes the CPU time that they need

• Process scheduler selects among available processes
for next execution on CPU

Andrew H. Fagg: Introduction to Operating Systems

Process Scheduler

Maintains scheduling queues of processes

• Job queue: set of all processes in the system

• Ready queue: set of all processes residing in main
memory, ready and waiting to execute

• Device queues: set of processes waiting for an I/O
device

• Processes migrate among the various queues,
depending (in part) on their state

Andrew H. Fagg: Introduction to Operating Systems

Ready Queue And Various I/O Device Queues

Andrew H. Fagg: Introduction to Operating Systems

Process Scheduling

Queueing diagram represents queues, resources, flows

Andrew H. Fagg: Introduction to Operating Systems

Scheduler Components

Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds),
so it must be fast

Andrew H. Fagg: Introduction to Operating Systems

Scheduler Components

Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds,
minutes), so it may respond slowly

• The long-term scheduler controls the degree of
multiprogramming

• Most important in (older) resource-bound systems

Andrew H. Fagg: Introduction to Operating Systems

Scheduler Components

Processes can be described as either:

• I/O-bound: spends more time doing I/O than
computations, many short CPU bursts

• CPU-bound: spends more time doing computations;
few very long CPU bursts

• Long-term scheduler strives for good process mix
• Goal: keep both I/O and CPU resources as busy as possible

Andrew H. Fagg: Introduction to Operating Systems

Medium Term Scheduling

Medium-term scheduler can be added if degree of
multiple programming needs to decrease

• Remove process temporarily from memory, store on
disk, bring back in from disk to continue execution:
swapping

Andrew H. Fagg: Introduction to Operating Systems

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow only
one process to run; others are suspended

• Due to screen real estate and user interface limits, iOS
provides for:

• Single foreground process: controlled via user interface

• Multiple background processes: in memory, running, but not on
the display, and with limits

• Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

• Android runs foreground and background processes, with
fewer limits

Andrew H. Fagg: Introduction to Operating Systems

Context Switching

• When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no
useful work while switching

• The more complex the OS and the PCB, the longer the
context switch

• Time is dependent on hardware support

• Some hardware provides multiple sets of registers per CPU
• Allows multiple contexts to be loaded at once

Andrew H. Fagg: Introduction to Operating Systems

Operations on Processes

Andrew H. Fagg: Introduction to Operating Systems

Process Creation

• Parent process creates child processes, which, in turn
create other processes, forming a tree of processes

• Generally, process identified and managed via a
process identifier (pid)

Andrew H. Fagg: Introduction to Operating Systems

Process Creation

• Resource sharing options
• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

• Execution options
• Parent and children execute concurrently

• Parent waits until children terminate

Andrew H. Fagg: Introduction to Operating Systems

Process Tree

Andrew H. Fagg: Introduction to Operating Systems

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Process Creation (Cont.)

• Address space
• Child duplicate of parent

• Child then has a program loaded into it

• UNIX examples
• fork() system call creates new process

• exec() system call used after a fork() to replace the process’
memory space with a new program

Andrew H. Fagg: Introduction to Operating Systems

fork live demo

Andrew H. Fagg: Introduction to Operating Systems

fork()

Andrew H. Fagg: Introduction to Operating Systems

fork() creates an identical process to the one that called fork()

• Same program

• Same state, including open file descriptors

• Exception: fork() returns 0 to the child; and a positive integer
to the parent

• Processes execute in parallel

Andrew H. Fagg: Introduction to Operating Systems

C Program Forking a
Child Process

Live execlp() demo

Andrew H. Fagg: Introduction to Operating Systems

execlp

execlp(char *command, char *argv0, char *argv1, … NULL)

• Replaces the currently executing program with a new
program & begins execution

• command is a string that references an executable file
• Can be absolute or relative path

• Relative path: use the path environment variable to find the
executable

• argv0, argv1, … are arguments to be passed to the
executable

• Don’t forget the NULL at the end!
Andrew H. Fagg: Introduction to Operating Systems

execlp

execlp(char *command, char *argv0, char *argv1, … NULL)

• If this function is successful in finding the specified
executable, it does not return!

Andrew H. Fagg: Introduction to Operating Systems

system()

system(char *command)

• Command specifies the executable and arguments in
one string

• Relative path: looks up the executable in the path
environment variable

• First calls fork(), then execlp()

• Always returns
• Return value is the exit code from the specified command

Andrew H. Fagg: Introduction to Operating Systems

Live system() demonstration

Andrew H. Fagg: Introduction to Operating Systems

Process Termination

Process executes last statement and then asks the
operating system to delete it using the exit() system call.

• exit(-1): -1 is the exit code returned by the process

• Status data from child can be passed to the parent
• pid = wait(&status);

• status contains information about the reason for termination

• Process’ resources are deallocated by operating system

Andrew H. Fagg: Introduction to Operating Systems

Process Termination

Some operating systems do not allow child processes to
exist if its parent has terminated (including Linux). If a
process terminates, then all its children must also be
terminated.

• If parent is executing, but not waiting (did not invoke
wait()) and the child process ends, then the child
process is a zombie

• If parent terminated without invoking wait(), the child
process is an orphan

• Orphans become children of the init process
Andrew H. Fagg: Introduction to Operating Systems

Cooperating Processes

• Independent process cannot affect or be affected by
the execution of another process

• Cooperating process can affect or be affected by the
execution of another process

• Advantages of process cooperation
• Information sharing

• Computation speed-up

• Modularity

• Convenience

Andrew H. Fagg: Introduction to Operating Systems

Multiprocess Architecture – Chrome
Browser

Many web browsers ran as single process (some still do)

• If one web site causes trouble, the entire browser can
hang or crash

Andrew H. Fagg: Introduction to Operating Systems

Multiprocess Architecture – Chrome
Browser

Google Chrome Browser is multiprocess with 3 different types of
processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect of
security exploits

• Plug-in process for each type of plug-in

Andrew H. Fagg: Introduction to Operating Systems

Interprocess Communication

• Cooperating processes need interprocess
communication (IPC)

• Two models of IPC
• Shared memory

• Message passing

Andrew H. Fagg: Introduction to Operating Systems

Communication Models

Andrew H. Fagg: Introduction to Operating Systems

Message Passing Shared Memory

Producer-Consumer Problem

• Producer: process generates data through some
mechanism

• Consumer: process uses data generated by another

Andrew H. Fagg: Introduction to Operating Systems

Producer-Consumer Problem

Typical approach: implement a data buffer from the
producer to the consumer

• unbounded-buffer places no practical limit on the size of
the buffer

• bounded-buffer assumes that there is a fixed buffer size

Andrew H. Fagg: Introduction to Operating Systems

Circular/Shared Buffer of Items
• Items are instances of type item

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• in = the next location to place a new item

• out = the next location to remove an item from

• Both the producer and consumer processes have
access to this buffer

Andrew H. Fagg: Introduction to Operating Systems

Circular/Shared Buffer of Items

• in == out: no items in the buffer

• (in+1)%BUFFER_SIZE = out: buffer is full

Andrew H. Fagg: Introduction to Operating Systems

Circular Buffer: Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced; // Copy item

in = (in + 1) % BUFFER_SIZE;

}

Andrew H. Fagg: Introduction to Operating Systems

Circular Buffer: Consumer

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Andrew H. Fagg: Introduction to Operating Systems

Shared Memory

• Shared memory: an area of memory shared among the
processes that wish to communicate

• The communication is entirely under the control of the
users processes not the operating system

• Good for efficiency

• Lots of opportunities for bugs

• Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access the shared memory

Andrew H. Fagg: Introduction to Operating Systems

Interprocess Communication:
Message Passing

Mechanism for processes to communicate and to
synchronize their actions

• Message system: processes communicate with each
other without resorting to shared variables

• IPC facility provides two operations:
• send(message)

• receive(message)

• The message size is either fixed or variable

Andrew H. Fagg: Introduction to Operating Systems

Message Passing
• If processes P and Q wish to communicate, they need

to:
• Establish a communication link between them
• Exchange messages via send/receive

• Implementation issues:
• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of

communicating processes?
• What is the capacity of a link? (buffer)
• Is the size of a message that the link can accommodate fixed

or variable?
• Is a link unidirectional or bi-directional?

Message Passing

• Implementation of communication link
• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:
• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

Andrew H. Fagg: Introduction to Operating Systems

Direct Communication Model

• Processes must name each other explicitly:
• send (P, message): send a message to process P

• receive(Q, message): receive a message from process Q

• Properties of communication link
• Links are established automatically

• A link is associated with exactly one pair of communicating
processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

Andrew H. Fagg: Introduction to Operating Systems

Indirect Communication Model

• Messages are directed and received from mailboxes
(also referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link
• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication
links

• Link may be unidirectional or bi-directional

Andrew H. Fagg: Introduction to Operating Systems

Indirect Communication

• Operations
• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

Andrew H. Fagg: Introduction to Operating Systems

Mailbox Sharing

• Scenario
• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions
• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive
operation

• Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Andrew H. Fagg: Introduction to Operating Systems

Synchronization

• Message passing may be either blocking or non-
blocking

• Blocking is considered synchronous
• Blocking send: the sender is blocked until the message is

received

• Blocking receive: the receiver is blocked until a message is
available

Andrew H. Fagg: Introduction to Operating Systems

Synchronization

• Non-blocking is considered asynchronous
• Non-blocking send: the sender sends the message and

continues

• Non-blocking receive: the receiver receives:
• A valid message, or

• Null message

• Different combinations possible
• If both send and receive are blocking, we have a

rendezvous

Andrew H. Fagg: Introduction to Operating Systems

Synchronization with Rendezvous
Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Andrew H. Fagg: Introduction to Operating Systems

Buffering

• Queue of messages attached to the link

• Implemented in one of three ways:
• Zero capacity: no messages are queued on a link.

Sender must wait for receiver (rendezvous)

• Bounded capacity: finite length of n messages
Sender must wait if link full

• Unbounded capacity: infinite length
Sender never waits

Andrew H. Fagg: Introduction to Operating Systems

Shared Memory in POSIX (includes Linux)

• Process first creates shared memory segment (or opens an
existing one):

shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

• Set the size of the object:
ftruncate(shm_fd, 4096);

• Create a pointer to the shared memory:
mmap(shm_fd, 0, 4096 PROT_WRITE, MAP_SHARED, shm_fd, 0);

• Now the process can write to the shared memory
sprintf(shared memory, "Writing to shared memory");

Andrew H. Fagg: Introduction to Operating Systems

Shared Memory
Producer

Andrew H. Fagg: Introduction to Operating Systems

Shared Memory
Consumer

Andrew H. Fagg: Introduction to Operating Systems

Client-Server Model of Communication

• Built on top of Producer/Consumer

• Server: provides some service (data, computation)

• Client: requests actions on the part of the server

• Implementation choices include:
• Sockets

• Pipes

• Remote Procedure Calls

• Remote Method Invocation (Java)

Andrew H. Fagg: Introduction to Operating Systems

Sockets
A socket is defined as an endpoint for communication

• Identified by a concatenation of IP address and port: a
number included at start of message packet to differentiate
network services on a host

• The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

• Communication consists between a pair of sockets

• All ports below 1024 are well known and are used for
standard services

• Special IP address 127.0.0.1 (loopback) to refer to system
on which process is running

Andrew H. Fagg: Introduction to Operating Systems

Socket Communication

Andrew H. Fagg: Introduction to Operating Systems

Remote Procedure Calls

• From the programmer’s perspective, they appear as
functions/methods that take arguments and return a
value

• Under the hood, this function call:
• Contacts a server

• Sends the arguments to the server

• Server does the work and sends the result back

• Return the return value back to the client

Andrew H. Fagg: Introduction to Operating Systems

Pipes

• Act as a conduit allowing two processes to
communicate

• Issues:
• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-
duplex?

• Must there exist a relationship (i.e., parent-child) between the
communicating processes?

• Can the pipes be used over a network?

Andrew H. Fagg: Introduction to Operating Systems

Pipes

• Ordinary pipes: cannot be accessed from outside the
process that created it.

• Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

• Named pipes: can be accessed without a parent-child
relationship.

Andrew H. Fagg: Introduction to Operating Systems

Ordinary Pipes

Ordinary Pipes allow communication in standard
producer-consumer style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the
pipe)

• Ordinary pipes are therefore unidirectional

Andrew H. Fagg: Introduction to Operating Systems

Ordinary Pipe

int fds[2];

int ret = pipe(fds);

if(ret < 0) exit(-1);

// Now use the pipe

• fds[0]: output from pipe

• fds[1]: input to pipe
Andrew H. Fagg: Introduction to Operating Systems

fds[0] fds[1]

Ordinary Pipes for Communication

• The pipe is implemented inside the kernel (so, it does
not exist within the process)

• However, the process maintains this pair of file
descriptors, which allow it to reference the pipe

Andrew H. Fagg: Introduction to Operating Systems

Ordinary Pipes for Communication

• The file descriptors cannot be shared outside of the
process

• But: if the process forks(), then both the parent and child
will have copies of the file descriptors!

• And these reference the same pipe

Andrew H. Fagg: Introduction to Operating Systems

Ordinary Pipe with Fork()

int fds[2];

int ret = pipe(fds);

if(ret < 0) exit(-1);

// Now use the pipe

int pid = fork()

if(pid > 0) { // Note: leaving off error case

// parent code

}else {

// child code

} Andrew H. Fagg: Introduction to Operating Systems

Before Fork

Andrew H. Fagg: Introduction to Operating Systems

fds[0] fds[1]

Kernel

Parent processes

After Fork

Andrew H. Fagg: Introduction to Operating Systems

fds[0] fds[1]

Kernel

Parent processes

fds[1]fds[0]

Child processes

Pipes

For our purposes, we will assume:

• Pipes will only work properly with on reader and one
writer (this is the typical use case)

• This means, after the fork, each of the parent and child
will close one of the two file descriptors

Andrew H. Fagg: Introduction to Operating Systems

After Fork: Parent is the Producer

Andrew H. Fagg: Introduction to Operating Systems

fds[0] fds[1]

Kernel

Parent processes

fds[1]fds[0]

Child processes

After Fork: Parent is the Producer

Andrew H. Fagg: Introduction to Operating Systems

fds[0] fds[1]

Kernel

Parent processes

fds[1]fds[0]

Child processes

After Fork: Parent is the Producer
// Now use the pipe

int pid = fork()

if(pid > 0) { // Note: leaving off error case

// parent code

close(fds[0])

:

}else {

// child code

close(fds[1])

:

}

Andrew H. Fagg: Introduction to Operating Systems

After Fork: Parent is the Producer

After fork and closing:

• Parent can write bytes to fds[1]

• Child can read these bytes from fds[0]

Andrew H. Fagg: Introduction to Operating Systems

After Fork: Parent is the Producer

• The pipe has a buffer: it will hold written bytes until they
are read

• If the writer closes the pipe, then
• The reader gets to read the remaining bytes

• But then will see an EOF

• Windows calls ordinary pipes anonymous pipes

Andrew H. Fagg: Introduction to Operating Systems

Pipe demos

Andrew H. Fagg: Introduction to Operating Systems

Named Pipes

Named Pipes are more powerful than ordinary pipes

• Communication can be bidirectional

• No parent-child relationship is necessary between the
communicating processes

• Several processes can use the named pipe for
communication

• Provided on both UNIX and Windows systems

Andrew H. Fagg: Introduction to Operating Systems

Named Pipes in Unix

• Access points exist in the file system
• Open them just as you would a file!

• Use read()/write() to receive/send data

• Can have multiple readers/writers
• A message is delivered to one randomly selected reader

• So, effectively, they are bidirectional

• However, we will use them as unidirectional pipes

• Create at the command line (or programmatically):
mkfifo [NAME]

Andrew H. Fagg: Introduction to Operating Systems

• Quick named pipe demo

Andrew H. Fagg: Introduction to Operating Systems

