Scheduling

CS 3113

Behavior of a Process

* Maximum CPU utilization obtained
with multiprogramming

 CPU-I/O Burst Cycle: Process
execution consists of a cycle of CPU
execution and I/O wait

* CPU burst followed by I/O burst

* When scheduling a process, the CPU
burst distribution Is our main concern

load store
add store
read from file

wait for I/0O

store increment
index
write to file

wait for I/0O

load store
add store
read from file

wait for I/0O

J_

<

~ CPU burst

> 1/0 burst

J‘ CPU burst

<

J\.

> 1/0 burst

~ CPU burst

= 1/0 burst

A Typical Distribution of CPU-burst Times

160 [

140 |-

120 |

—h
o
o

frequency

o
o

£~ (0))
(& (&
T —=::_

N
o

| | | |
16 24 32 40
burst duration (milliseconds)

o
(0 0]

CPU Scheduler

* Short-term scheduler selects from among the processes
In ready queue, and allocates the CPU to one of them

* Queue may be ordered in various ways

* CPU scheduling decisions may take place when a
Process.
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

» Scheduling under 1 and 4 is nonpreemptive
« Cases 2 and 3 reqguire process preemption

Dispatcher

 Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:
* switching context
 switching to user mode

* jJumping to the proper location in the user program to
continue executing that program

* Dispatch latency: time it takes for the dispatcher to
stop one process and start another running

Scheduling Criteria

A variety of metrics are possible:
« CPU utilization — keep the CPU as busy as possible

* Throughput — # of processes that complete their
execution per time unit

 Turnaround time — amount of time to execute a
particular process

* Walting time — amount of time a process has been
waiting Iin the ready queue

* Response time — amount of time it takes from when a
request was submitted until the first response Is
produced

Possibilities for Optimization Criteria

* Max CPU utilization
* Max throughput

* Min turnaround time
* Min waiting time

* Min response time

First- Come, First-Served (FCFS)
Scheduling

Process Burst Time

P, 24
32 3
33 3 . . .
* Suppose that the processes arrive in the order at time zero:

Pl J PZ J P3
The Gantt Chart for the schedule Is:

P P P
1 2 3

« Waiting time for each: ??7?
* Average waiting time: ?7??

First- Come, First-Served (FCFS)

Scheduling

Process Burst Time

* Suppose that the
Pl , I:)2 , P3

P, 24

32 3

33 3 - - -
orocesses arrive in the order at time zero:

The Gantt Chart for the schedule Is:

P P P
1 2 3

« Waiting time for P, =0; P, =24; P;= 27
* Average waiting time: (0 +24 + 27)/3 =17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
I:)2 , PS , Pl
* The Gantt chart for the schedule is:

= P P
2 3 1

« Waiting time for all: ??7??
« Average waiting time: ???

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
I:)2 , P3 , I:)1
* The Gantt chart for the schedule is:

 Waiting time for all: P, =6;P,=0.P;=3
« Average waiting time: (6+0+ 3)/3=3
* Much better than previous case

» Convoy effect - short process behind long process
« Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

» Assoclate with each process the length of its next CPU
burst

» Use these lengths to schedule the process with the shortest
time
« SJF Is optimal: gives minimum average waiting time for
a given set of processes
 The difficulty iIs knowing the length of the next CPU request
« Could ask the programmer to tell us

Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P 3

N

« SJF scheduling chart

« Average waiting time = ????

Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P 3

N

« SJF scheduling chart

0 3 9 16

« Average waitingtime=(3+16+9+0)/4=7

Estimating Length of Next CPU Burst

« Can only estimate the length — should be similar to the previous one
* Then pick process with shortest predicted next CPU burst

« Can be done by using the length of previous CPU bursts, using
exponential averaging

. t, = actual length of nth CPU burst

. T,,, = predicted value for the next CPU burst

1
2
3. a,0<a <1
4

_ T —at +(1-a)r_.
. Define : n+1 n n

« Commonly, a set to %2
* Preemptive version called shortest-remaining-time-first

Example Burst Length Predictions

12

time ——

CPU burst (t) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

Andrew H. Fagg: Introduction to Operating Systems 16

Example Cases of Exponential Averaging

« o =0

* The1 = T

» Recent history does not count
o =1

* T — A 1:n
* Only the actual last CPU burst counts
If we expand the formula, we get:

Ty =—ot+1l-o)at, ;+...
+(1l-a)at, ;+..

+(1- o)" 1

Since both o and (1 - o) are less than or equal to 1, each successive term has
less weight than its predecessor

Example of Shortest-Remaining-Time-First

 Now we add the concepts of varying arrival times and preemption to the analysis

Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

* Preemptive SJF Gantt Chart

* Average waiting time = ??? msec

Example of Shortest-Remaining-Time-First

 Now we add the concepts of varying arrival times and preemption to the analysis

Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

* Preemptive SJF Gantt Chart

P = P P P
1 2 4 1 8

* Average waiting time ??? msec

Example of Shortest-Remaining-Time-First

 Now we add the concepts of varying arrival times and preemption to the analysis

Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

* Preemptive SJF Gantt Chart

P = P P P
1 2 4 1 8

« Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
 In Unix: smallest integer = highest priority

« Two versions:
* Preemptive
* Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next CPU
burst time

Problem = Starvation — low priority processes may never execute

Solution = Aging — as time progresses, increase the priority of the process

Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P 5 2

5

* Priority scheduling Gantt Chart

« Average waiting time = ??? msec

Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P 5 2

5

* Priority scheduling Gantt Chart

P P E

2 1

0 1 6 16 18 19

5

« Average waiting time = ??? msec

Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P 5 2

5

* Priority scheduling Gantt Chart

P P E

2 1

0 1 6 16 18 19

5

« Average waiting time = 8.2 msec

Round Rob

« Each process gets a smal
usually 10-100 millisecono

« After this time has elapsed

In (RR) Scheduling

unit of CPU time (time quantum q),
S.

, the process Is preempted and added

to the end of the ready queue.

e If there are n processes In
IS q, then:

the ready queue and the time quantum

« Each process gets 1/n of the CPU time in chunks of at most g time

units at once.

* NO process waits more than (n-1)g time units.

Round Robin (RR) Scheduling

* Timer Interrupts every quantum to schedule next
process

 Performance

 q large = Reduces to FIFO
* g small = All jobs must use multiple quanta to complete

* g must be large with respect to context switch time, otherwise
overhead is too high

Example of RR with Time Quantum =4

Process Burst Time

P, 24
P, 3

* The Gantt chart Is:

Example of RR with Time Quantum =4

Process Burst Time

P, 24
P, 3

* The Gantt chart Is:

P P P P P P P =
1 2 3 1 1 1 1 1

Round Robin Notes

* Typically, higher average turnaround than SJF, but
better response

* g should be large compared to context switch time

g usually 10ms to 100ms, context switch < 10 usec

Multilevel Queues

* Ready queue is partitioned into separate queues, €e.g.:
* foreground (interactive)
* background (batch)

* Process permanently in a given gueue

* Each queue has its own scheduling algorithm. E.q.:

* Foreground: RR
« Background: FCFS

Multilevel Queues

Scheduling possibilities between the gqueues:

* Fixed priority scheduling
» Serve all from foreground then from background
 Possibility of starvation.

* Time slice: each queue gets a certain amount of CPU time
which it can schedule amongst its processes. For example:
* 80% to foreground in RR
« 20% to background in FCFS

Multilevel Queue Scheduling

highest priority

> interactive editing processes ==

m— batch processes m—

— student processes >

lowest priority

Multilevel Feedback Queue

* A process can move between the various queues (Aging!)

* Multilevel-feedback-queue scheduler defined by the
following parameters:
 Number of queues
« Scheduling algorithms for each queue
* Method used to determine when to upgrade a process
 Method used to determine when to demote a Process

* Method used to determine which queue a process will enter when
that process needs service

Example: Multilevel Feedback Queue

* Three queues: > quantum -8
* Qy— RR with time quantum 8 milliseconds
* Q; — RR time quantum 16 milliseconds
Q FCES —> quantum = 16
[) 2 —_—
» Scheduling
—> FCFS

* Anew job enters queue Q,
* When it gains CPU, job receives 8 milliseconds
« If it does not finish in 8 milliseconds, job is moved to queue Q,

« At Q, job is again served FCFS and receives 16 additional milliseconds
« If it still does not complete, it is preempted and moved to queue Q,

Thread Scheduling

Distinction between user-level and kernel-level threads

* Many-to-one and many-to-many models, the user-space
thread library schedules user-level threads to run on a light-
weight process (LWP)

« Known as process-contention scope (PCS) since scheduling
competition is within the process

* Typically done via priority set by programmer

» Kernel thread scheduled onto available CPU is system-
contention scope (SCS):. competition among all threads in
system

Scheduling within the Pthread Library

* API| allows the program to specify either PCS or SCS
during thread creation

* PTHREAD_SCOPE_PROCESS schedules threads using
PCS scheduling

« PTHREAD SCOPE_SYSTEM schedules threads using SCS
scheduling

* Options can be limited by OS: Linux and Mac OS X only
allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API:

#include <stdio.h>] _
bastine NOM_THREADS S Determining Default Scope
int main (int argc, char *argv[]) {

int i, scope;
pthread_t tid[NUM THREADS];

pthread attr t attr;
/* get the default attributes */
pthread attr init (&attr);

/* first ingquire on the current scope */
if (pthread attr getscope(&attr, &scope) != 0)

fprintf (stderr, "Unable to get scheduling scope\n");

else {
if (scope == PTHREAD SCOPE PROCESS)
printf ("PTHREAD SCOPE PROCESS") ;
else if (scope == PTHREAD SCOPE SYSTEM)
printf ("PTHREAD SCOPE SYSTEM") ;
else

fprintf (stderr, "Illegal scope value.\n");

Pthread /* set the scheduling algorithm to PCS or SCS */
SChedUIIng API pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM) ;

/* create the threads */
for (1 = 0; 1 < NUM_THREADS; i4++4)

pthread create(&tid[1], &attr, runner, NULL);

/* now join on each thread */
for (1 = 0; 1 < NUM THREADS; 1++)

pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */

voilid *runner (void *param)

{

/* do some work ... */

pthread exit (0);

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor

« Asymmetric multiprocessing: only one processor accesses the system data
structures for scheduling, alleviating the need for data sharing

« Symmetric multiprocessing (SMP). each processor is self-scheduling
» All processes in common ready queue, or
» Each processor has its own private queue of ready processes

* Processor affinity: process has affinity for processor on which it is currently
running

 soft affinity
* hard affinity
 Variations including processor sets

Andrew H. Fagg: Introduction to Operating Systems

41

Multiple-Processor Scheduling:
Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

* Load balancing attempts to keep workload evenly
distributed

* Push migration: periodic task checks load on each
processor, and if found pushes task from overloaded
CPU to other CPUs

* Pull migration: idle processors pulls waiting task from
busy processor

NUMA and CPU Scheduling

NUMA: Non-Uniform
Memory Allocation CPU CPU

fast access WQ& fast access
GSS
\ \}

memory memory

computer

Andrew H. Fagg: Introduction to Operating Systems 43

Multicore Processors

Recent trend to place multiple processor cores on same
physical chip
» Faster and consumes less power

» Multiple threads per core also growing

» Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

Multithreaded Multicore System

C | compute cycle M | memory stall cycle
thread
= . M C M c M

P
time
thread;
C I C M C

ih
b . e | M o Mo | e

Andrew H. Fagg: Introduction to Operating Systems

me

45

Andrew H. Fagg: Introduction to Operating Systems

46

