
Scheduling
CS 3113

Behavior of a Process

• Maximum CPU utilization obtained
with multiprogramming

• CPU–I/O Burst Cycle: Process
execution consists of a cycle of CPU
execution and I/O wait

• CPU burst followed by I/O burst

• When scheduling a process, the CPU
burst distribution is our main concern

Andrew H. Fagg: Introduction to Operating Systems 2

A Typical Distribution of CPU-burst Times

Andrew H. Fagg: Introduction to Operating Systems 3

CPU Scheduler
• Short-term scheduler selects from among the processes

in ready queue, and allocates the CPU to one of them

• Queue may be ordered in various ways

• CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

• Scheduling under 1 and 4 is nonpreemptive

• Cases 2 and 3 require process preemption
Andrew H. Fagg: Introduction to Operating Systems 4

Dispatcher

• Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

• switching context

• switching to user mode

• jumping to the proper location in the user program to
continue executing that program

• Dispatch latency: time it takes for the dispatcher to
stop one process and start another running

Andrew H. Fagg: Introduction to Operating Systems 5

Scheduling Criteria
A variety of metrics are possible:

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their
execution per time unit

• Turnaround time – amount of time to execute a
particular process

• Waiting time – amount of time a process has been
waiting in the ready queue

• Response time – amount of time it takes from when a
request was submitted until the first response is
produced

Andrew H. Fagg: Introduction to Operating Systems 6

Possibilities for Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

Andrew H. Fagg: Introduction to Operating Systems 7

First- Come, First-Served (FCFS)
Scheduling

Andrew H. Fagg: Introduction to Operating Systems 8

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order at time zero:
P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for each: ????

• Average waiting time: ???

P P P
1 2 3

0 2 4 3 02 7

First- Come, First-Served (FCFS)
Scheduling

Andrew H. Fagg: Introduction to Operating Systems 9

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order at time zero:
P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 2 4 3 02 7

FCFS Scheduling (Cont.)

Andrew H. Fagg: Introduction to Operating Systems 10

Suppose that the processes arrive in the order:

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for all: ????

• Average waiting time: ???

P
1

0 3 6 3 0

P
2

P
3

FCFS Scheduling (Cont.)

Andrew H. Fagg: Introduction to Operating Systems 11

Suppose that the processes arrive in the order:

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for all: P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect - short process behind long process
• Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 3 0

P
2

P
3

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU
burst

• Use these lengths to schedule the process with the shortest
time

• SJF is optimal: gives minimum average waiting time for
a given set of processes

• The difficulty is knowing the length of the next CPU request

• Could ask the programmer to tell us

Andrew H. Fagg: Introduction to Operating Systems 12

Example of SJF

Andrew H. Fagg: Introduction to Operating Systems 13

ProcessArriva l TimeBurst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = ????

Example of SJF

Andrew H. Fagg: Introduction to Operating Systems 14

ProcessArriva l TimeBurst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 2 4

P
4

P
1

1 69

P
2

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.












1n

th

n
nt

Estimating Length of Next CPU Burst

• Can only estimate the length – should be similar to the previous one
• Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using
exponential averaging

• Commonly, α set to ½

• Preemptive version called shortest-remaining-time-first

Andrew H. Fagg: Introduction to Operating Systems 15

  .1
1 nnn

t  


Example Burst Length Predictions

Andrew H. Fagg: Introduction to Operating Systems 16

Example Cases of Exponential Averaging

Andrew H. Fagg: Introduction to Operating Systems 17

•  =0

• n+1 = n

• Recent history does not count

•  =1

• n+1 =  tn

• Only the actual last CPU burst counts

• If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j tn -j + …

+(1 - )n +1 0

• Since both  and (1 - ) are less than or equal to 1, each successive term has

less weight than its predecessor

Example of Shortest-Remaining-Time-First

Andrew H. Fagg: Introduction to Operating Systems 18

• Now we add the concepts of varying arrival times and preemption to the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = ??? msec

Example of Shortest-Remaining-Time-First

Andrew H. Fagg: Introduction to Operating Systems 19

• Now we add the concepts of varying arrival times and preemption to the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time ??? msec

P
4

0 1 2 6

P
1

P
2

1 0

P
3

P
1

5 1 7

Example of Shortest-Remaining-Time-First

Andrew H. Fagg: Introduction to Operating Systems 20

• Now we add the concepts of varying arrival times and preemption to the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P
4

0 1 2 6

P
1

P
2

1 0

P
3

P
1

5 1 7

Priority Scheduling
• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority

• In Unix: smallest integer  highest priority

• Two versions:

• Preemptive

• Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted next CPU

burst time

• Problem  Starvation – low priority processes may never execute

• Solution  Aging – as time progresses, increase the priority of the process

Andrew H. Fagg: Introduction to Operating Systems 21

Example of Priority Scheduling

Andrew H. Fagg: Introduction to Operating Systems 22

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = ??? msec

Example of Priority Scheduling

Andrew H. Fagg: Introduction to Operating Systems 23

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = ??? msec

Example of Priority Scheduling

Andrew H. Fagg: Introduction to Operating Systems 24

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

Round Robin (RR) Scheduling

• Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds.

• After this time has elapsed, the process is preempted and added

to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum

is q, then:

• Each process gets 1/n of the CPU time in chunks of at most q time

units at once.

• No process waits more than (n-1)q time units.

Andrew H. Fagg: Introduction to Operating Systems 25

Round Robin (RR) Scheduling

• Timer interrupts every quantum to schedule next

process

• Performance

• q large  Reduces to FIFO

• q small  All jobs must use multiple quanta to complete

• q must be large with respect to context switch time, otherwise

overhead is too high

Andrew H. Fagg: Introduction to Operating Systems 26

Example of RR with Time Quantum = 4

Andrew H. Fagg: Introduction to Operating Systems 27

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

Example of RR with Time Quantum = 4

Andrew H. Fagg: Introduction to Operating Systems 28

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

P P P
1 1 1

0 1 8 3 02 61 44 7 1 0 2 2

P
2

P
3

P
1

P
1

P
1

Round Robin Notes

Andrew H. Fagg: Introduction to Operating Systems 29

• Typically, higher average turnaround than SJF, but

better response

• q should be large compared to context switch time

• q usually 10ms to 100ms, context switch < 10 usec

Multilevel Queues

• Ready queue is partitioned into separate queues, e.g.:

• foreground (interactive)

• background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm. E.g.:

• Foreground: RR

• Background: FCFS

Andrew H. Fagg: Introduction to Operating Systems 32

Multilevel Queues

Scheduling possibilities between the queues:

• Fixed priority scheduling

• Serve all from foreground then from background

• Possibility of starvation.

• Time slice: each queue gets a certain amount of CPU time

which it can schedule amongst its processes. For example:

• 80% to foreground in RR

• 20% to background in FCFS

Andrew H. Fagg: Introduction to Operating Systems 33

Multilevel Queue Scheduling

Andrew H. Fagg: Introduction to Operating Systems 34

Multilevel Feedback Queue

• A process can move between the various queues (Aging!)

• Multilevel-feedback-queue scheduler defined by the

following parameters:

• Number of queues

• Scheduling algorithms for each queue

• Method used to determine when to upgrade a process

• Method used to determine when to demote a process

• Method used to determine which queue a process will enter when

that process needs service

Andrew H. Fagg: Introduction to Operating Systems 35

Example: Multilevel Feedback Queue

Andrew H. Fagg: Introduction to Operating Systems 36

• Three queues:

• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

• Scheduling

• A new job enters queue Q0

• When it gains CPU, job receives 8 milliseconds

• If it does not finish in 8 milliseconds, job is moved to queue Q1

• At Q1 job is again served FCFS and receives 16 additional milliseconds

• If it still does not complete, it is preempted and moved to queue Q2

Thread Scheduling

Distinction between user-level and kernel-level threads

• Many-to-one and many-to-many models, the user-space
thread library schedules user-level threads to run on a light-
weight process (LWP)

• Known as process-contention scope (PCS) since scheduling
competition is within the process

• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is system-
contention scope (SCS): competition among all threads in
system

Andrew H. Fagg: Introduction to Operating Systems 37

Scheduling within the Pthread Library

• API allows the program to specify either PCS or SCS

during thread creation

• PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

• Options can be limited by OS: Linux and Mac OS X only

allow PTHREAD_SCOPE_SYSTEM

Andrew H. Fagg: Introduction to Operating Systems 38

Pthread Scheduling API:
Determining Default Scope

Andrew H. Fagg: Introduction to Operating Systems 39

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

int i, scope;

pthread_t tid[NUM THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* first inquire on the current scope */

if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");

else {

if (scope == PTHREAD_SCOPE_PROCESS)

printf("PTHREAD_SCOPE_PROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)

printf("PTHREAD_SCOPE_SYSTEM");

else

fprintf(stderr, "Illegal scope value.\n");

}

Pthread
Scheduling API

Andrew H. Fagg: Introduction to Operating Systems 40

/* set the scheduling algorithm to PCS or SCS */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr, runner, NULL);

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */

pthread_exit(0);

}

Multiple-Processor Scheduling
CPU scheduling more complex when multiple CPUs are available

• Homogeneous processors within a multiprocessor

• Asymmetric multiprocessing: only one processor accesses the system data

structures for scheduling, alleviating the need for data sharing

• Symmetric multiprocessing (SMP): each processor is self-scheduling

• All processes in common ready queue, or

• Each processor has its own private queue of ready processes

• Processor affinity: process has affinity for processor on which it is currently

running

• soft affinity

• hard affinity

• Variations including processor sets

Andrew H. Fagg: Introduction to Operating Systems 41

Multiple-Processor Scheduling:
Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly
distributed

• Push migration: periodic task checks load on each
processor, and if found pushes task from overloaded
CPU to other CPUs

• Pull migration: idle processors pulls waiting task from
busy processor

Andrew H. Fagg: Introduction to Operating Systems 42

NUMA and CPU Scheduling

NUMA: Non-Uniform
Memory Allocation

Andrew H. Fagg: Introduction to Operating Systems 43

Multicore Processors

Recent trend to place multiple processor cores on same
physical chip

• Faster and consumes less power

• Multiple threads per core also growing
• Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Andrew H. Fagg: Introduction to Operating Systems 44

Multithreaded Multicore System

Andrew H. Fagg: Introduction to Operating Systems 45

Andrew H. Fagg: Introduction to Operating Systems 46

