
• Project 2 questions
• To receive the bonus, you must submit to the

Project 2 Bonus gradescope dropbox

• Exam questions

• Threads

Andrew H. Fagg: Introduction to Operating Systems 1

Threads
CS 3113

Concurrency vs Parallelism

Andrew H. Fagg: Introduction to Operating Systems 3

Concurrency vs Parallelism

• Concurrent execution on single-core system:

• Parallelism on a multi-core system:

Andrew H. Fagg: Introduction to Operating Systems 4

Concurrency vs Parallelism

• Concurrency: rapid switching of processes onto the
CPU, which gives the illusion that multiple processes
are executing at once

• Parallelism: have hardware support to execute multiple
things at once

Andrew H. Fagg: Introduction to Operating Systems 5

Concurrency vs Parallelism

Parallelism: have hardware support to execute multiple
things at once

• Core: physical unit of code execution (instruction
decoding, registers, etc.)

• CPU: Nominally (today), the computing hardware on a
single chip. Can contain multiple cores

• Today, we often have multiple CPU machines, with each
CPU containing multiple cores

Andrew H. Fagg: Introduction to Operating Systems 6

Multi-Core Programming

We can explicitly write a program that has multiple
execution contexts

• Distribute across the available cores

• Do different parts of the work in parallel

Andrew H. Fagg: Introduction to Operating Systems 7

Processes

Often exist in isolation:

• Separate memory
• Program

• Data (globals, heap, etc)

• Separate execution context
• Program counter

• Registers

Andrew H. Fagg: Introduction to Operating Systems 8

Threads

• Memory is shared!
• Program

• Data (globals, heap, etc)

• Separate execution context
• Program counter

• Registers

We refer to an execution context as a thread

Andrew H. Fagg: Introduction to Operating Systems 9

Process vs Threads within a Process

Andrew H. Fagg: Introduction to Operating Systems 10

Advantages of Multi-Thread
Programming

• Implementation: Can divide a big task into many, easy to
implement tasks

• Responsiveness: may allow continued execution if part of
process is blocked, especially important for user interfaces

• Resource Sharing: threads share resources of process,
easier than shared memory or message passing

• Economy: cheaper than process creation, and thread
switching has lower overhead than context switching

• Scalability: process can take advantage of multiprocessor
architectures

Andrew H. Fagg: Introduction to Operating Systems 11

Multi-Thread Programming

Types of parallelism

• Data parallelism – distributes subsets of the same data
across multiple cores, same operation on each

• Task parallelism – distributing threads across cores,
each thread performing unique operation

Andrew H. Fagg: Introduction to Operating Systems 12

Multi-Thread Programming

Architectural support for threading has increased in the last
couple of decades

• Core: hardware pipeline for execution of instructions
• Single instruction in CISC processors requires many steps

(including operand fetch, multiple execution step, store of result)

• Hardware thread:
• One physical thread appears to the OS as multiple independent

cores
• Implementation: have instructions in the pipeline from more than

one hardware thread

• Oracle SPARC T4 with 8 cores, and 8 hardware threads per
core

Andrew H. Fagg: Introduction to Operating Systems 13

Multi-Thread Programming

How much faster can work be done with parallelism?

Andrew H. Fagg: Introduction to Operating Systems 14

Amdahl’s Law

Performance speedup with parallelization

• S: fraction of task that is necessarily serial (rest is
parallel)

• N: number of processors/cores

Andrew H. Fagg: Introduction to Operating Systems 15

Amdahl’s Law

Performance speedup with parallelization

• What happens as S approaches 0?

• What happens as S approaches 1?

• What happens as N approaches infinity?

Andrew H. Fagg: Introduction to Operating Systems 16

Support for Threads

Management of threads: must address the scheduling of
threads for execution

• User space
• Managed by libraries that live entirely in the user space

• More general / portable

• Kernel space
• Managed through systems calls to the kernel

• Allows us to take more advantage of the available hardware

• But: can be more hardware specific

Andrew H. Fagg: Introduction to Operating Systems 17

Support for Threads

User space examples

• POSIX Pthreads

• Windows threads

• Java threads

Andrew H. Fagg: Introduction to Operating Systems 18

Support for Threads

Kernel space provided by all modern OSes, including:

• Windows

• Solaris

• Linux

• Tru64 UNIX

• Mac OS X

Andrew H. Fagg: Introduction to Operating Systems 19

Multithreading Models

What is the relationship between programming of threads
in the user space and the implementation in the kernel
space?

Andrew H. Fagg: Introduction to Operating Systems 20

Multithreading Models

Relationship between user space threads and kernel
threads. Options include:

• Many-to-One

• One-to-One

• Many-to-Many

Andrew H. Fagg: Introduction to Operating Systems 21

Many-to-One

• Many user-level threads mapped to
single kernel thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel
on multicore system because only one
may be in kernel at a time

• Few systems currently use this model

• Examples:
• Solaris Green Threads

• GNU Portable Threads
Andrew H. Fagg: Introduction to Operating Systems 22

One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted
due to overhead

• Examples
• Windows

• Linux

• Solaris 9 and later

Andrew H. Fagg: Introduction to Operating Systems 23

Many-to-Many Model

• Allows many user level threads to
be mapped to many kernel threads

• Allows the operating system to
create a sufficient number of
kernel threads

• Solaris prior to version 9

• Windows with the ThreadFiber
package

Andrew H. Fagg: Introduction to Operating Systems 24

Thread Libraries

Programmer API for doing multithreading

Andrew H. Fagg: Introduction to Operating Systems 25

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• Specification, not implementation
• API specifies behavior of the thread library, implementation is

up to development of the library

• Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

Andrew H. Fagg: Introduction to Operating Systems 26

Pthreads

Set up:

• Global variable(!):
sum

• Function prototype:
runner

Andrew H. Fagg: Introduction to Operating Systems 27

Pthreads

Parent:

• Create a single thread
• Starts execution

• Join: parent waits for
the child to exit

Child:

• Writes result to global
variable

Andrew H. Fagg: Introduction to Operating Systems 28

pthreads demo

Andrew H. Fagg: Introduction to Operating Systems 29

Pthreads

• Join requires specific thread ID

• If the thread has already quit by the time join() is called,
then it returns immediately

Andrew H. Fagg: Introduction to Operating Systems 30

Implicit Threading

Creation and management of threads done by compilers
and run-time libraries rather than programmers

• Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

• Methods include:
• Thread Pools

• OpenMP

• Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

Andrew H. Fagg: Introduction to Operating Systems 31

Thread Pools

• Create a number of persistent threads in a pool where
they await work

• When a process decides that a new task is to be
executed (this is a function to be executed by a thread),
it is placed into a queue

• Existing threads in the pool, as they are available, take
tasks from the queue to execute

Andrew H. Fagg: Introduction to Operating Systems 32

Thread Pools

• Advantages:
• Usually slightly faster to service a request with an existing

thread than create a new thread

• Allows the number of threads in the application(s) to be
bound to the size of the pool

• Separating task to be performed from mechanics of creating
task allows different strategies for running task

• i.e.Tasks could be scheduled to run periodically

• Thread pools support: Windows, Android, …

Andrew H. Fagg: Introduction to Operating Systems 33

OpenMP

• Set of compiler directives and an API for C, C++,
FORTRAN

• Provides support for parallel programming in shared-
memory environments

• Identifies parallel regions – blocks of code that can run
in parallel

Andrew H. Fagg: Introduction to Operating Systems 34

OpenMP

Create as many threads as there are cores:

#pragma omp parallel

Run for loop in parallel:

#pragma omp parallel for for(i=0;i<N;i++)
{

c[i] = a[i] + b[i];

}

Andrew H. Fagg: Introduction to Operating Systems 35

OpenMP

Andrew H. Fagg: Introduction to Operating Systems 36

Interaction Between
Processes and Threads

• Process-level operations: fork() and exec()

• Should fork() copy all currently running threads? Or just
the one that called fork()?

• Some OSes provide both types of fork()

• Which one we choose depends on what the parent/child do
next

• If the child calls exec() immediately after being created, then
we probably don’t need to copy all of the other threads

Andrew H. Fagg: Introduction to Operating Systems 39

