* Project 2 questions

* To receive the bonus, you must submit to the
Project 2 Bonus gradescope dropbox

* Exam questions

 Threads

Threads

CS 3113

Concurrency vs Parallelism

Concurrency vs Parallelism
« Concurrent execution on single-core system:

single core

T1‘TZ‘T3‘T4‘T1‘T2‘T3‘T4‘T1‘...

time

>

» Parallelism on a multi-core system:

core 1 T4 T3 T4 T3 T4

core 2 To Ty To Ty To

Concurrency vs Parallelism

« Concurrency: rapid switching of processes onto the
CPU, which gives the illusion that multiple processes
are executing at once

 Parallelism: have hardware support to execute multiple
things at once

Concurrency vs Parallelism

Parallelism: have hardware support to execute multiple
things at once

» Core: physical unit of code execution (instruction
decoding, registers, etc.)

 CPU: Nominally (today), the computing hardware on a
single chip. Can contain multiple cores

» Today, we often have multiple CPU machines, with each
CPU containing multiple cores

Multi-Core Programming

We can explicitly write a program that has multiple
execution contexts

* Distribute across the available cores
Do different parts of the work in parallel

Processes

Often exist In isolation:

e Separate memory
* Program
« Data (globals, heap, etc)

e Separate execution context
* Program counter
* Registers

Threads

 Memory Is shared!
* Program
« Data (globals, heap, etc)

» Separate execution context
* Program counter
* Registers

We refer to an execution context as a thread

code

data

files

registers

Process vs Threads within a Process

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

éh

— thread

multithreaded process

Andrew H. Fagg: Introduction to Operating Systems

Advantages of Multi-Thread

Programming

* Implementation: Can divide a big task into many, easy to
Implement tasks

* Responsiveness: may allow continued execution If part of
orocess Is blocked, especially important for user interfaces

* Resource Sharing: threads share resources of process,
easier than shared memory or message passing

 Economy: cheaper than process creation, and thread
switching has lower overhead than context switching

» Scalability: process can take advantage of multiprocessor
architectures

Multi-Thread Programming

Types of parallelism
lelism — distributes subsets of the same data

e Data para
across mu

* Task para

tiple cores, same operation on each
lelism — distributing threads across cores,

each thread performing unique operation

Andrew H. Fagg: Introduction to Operating Systems

12

Multi-Thread Programming

Architectural support for threading has increased in the last
couple of decades

» Core: hardware pipeline for execution of instructions

* Single instruction in CISC processors requires many steps
(including operand fetch, multiple execution step, store of result)

« Hardware thread:

* One physical thread appears to the OS as multiple independent
cores

* Implementation: have instructions in the pipeline from more than
one hardware thread

* Oracle SPARC T4 with 8 cores, and 8 hardware threads per
core

Multi-Thread Programming

How much faster can work be done with parallelism?

Amdahl’'s Law

Performance speedup with parallelization

 S: fraction of task that Is necessarily serial (rest Is
parallel)

* N: number of processors/cores

speedup <

Amdahl’'s Law

Performance speedup with parallelization
* What happens as S approaches 0?7
* What happens as S approaches 17
* What happens as N approaches infinity?

speedup <

Support for Threads

Management of threads: must address the scheduling of
threads for execution

* User space
 Managed by libraries that live entirely in the user space
* More general / portable

» Kernel space
« Managed through systems calls to the kernel
 Allows us to take more advantage of the available hardware

» But: can be more hardware specific

Support for Threads

User space examples
« POSIX Pthreads

* Windows threads

« Java threads

Support for Threads

Kernel space provided by all modern OSes, including:
* Windows

« Solaris

* Linux

* Tru64 UNIX

* Mac OS X

Multithreading Models

What Is the relationship between programming of threads
INn the user space and the implementation in the kernel
space?

Multithreading Models

Relationship between user space threads and kernel
threads. Options include:

* Many-to-One
* One-to-One
* Many-to-Many

Many-to-One

* Many user-level threads mapped to
single kernel thread g é

* One thread blocking causes all to block

* Multiple threads may not run in parallel
on multicore system because only one
may be in kernel at a time

* Few systems currently use this model

* Examples:

e Solaris Green Threads «—— kernel thread
* GNU Portable Threads

Andrew H. Fagg: Introduction to Operating Systems 22

<«— user thread

One-to-One

* Each user-level thread maps to kernel thread
 Creating a user-level thread creates a kernel thread
* More concurrency than many-to-one

* Number of threads per process sometimes restricted
due to overhead

o Examp|es <«— user thread
* Windows

e Linux
e Solaris 9 and later
<«——kernel thread

Many-to-Many Model

 Allows many user level threads to 3 3
be mapped to many kernel threads ;

* Allows the operating system to
create a sufficient number of
kernel threads

e Solaris prior to version 9

* Windows with the ThreadFiber
package

34— user thread

<«——kernel thread

Thread Libraries

Programmer API for doing multithreading

Pthreads

* May be provided either as user-level or kernel-level

 APOSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

» Specification, not implementation
* API| specifies behavior of the thread library, implementation is
up to development of the library

« Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

Pthreads

#include <pthread.h>

Set up #include <stdio.h>

int sum; /* this data is shared by the thread(s) */

° (:;I()t)fil \/Eirifit)lea(!): void *runner(void *param); /* threads call this function */

sSum int main(int argc, char *argv([])
{

° Functlon prototype pthread t tid; /* the thread identifier */

pthread attr_t attr; /* set of thread attributes */
runner

if (argec !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1i]) < 0) {

fprintf (stderr,")d must be >= 0\n",atoi(argv[1]));
return -1;

}

Andrew H. Fagg: Introduction to Operating Systems 27

/* get the default attributes */
Pth re ad S pthread attr_init (&attr);
/* create the thread */
pthread create(&tid,&attr,runner,argv[1]);
/* wait for the thread to exit */

Parent: pthread_join(tid,NULL);
* Create a single thread i i¢ ('sun = %a\n" , sum);
» Starts execution }
 Join: parent walits fOr /x The thread will begin control in this function */
the child to exit void *runner(void *param)
{
int i, upper = atoi(param);
: sum = 0,
Child:
_ for (i = 1; i <= upper; i++)
* Writes result to global sum += i
variable

pthread exit(0);

pthreads demo

Andrew H. Fagg: Introduction to Operating Systems

29

Pthreads

« Join requires specific thread ID

* |If the thread has already quit by the time join() is called,
then It returns immediately

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Implicit Threading

Creation and management of threads done by compilers
and run-time libraries rather than programmers

* Growing In popularity as numbers of threads increase,
program correctness more difficult with explicit threads

 Methods include:

 Thread Pools
* OpenMP

* Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

Thread Pools

* Create a number of persistent threads in a pool where
they awalit work

* When a process decides that a new task Is to be
executed (this Is a function to be executed by a thread),
it Is placed Iinto a queue

 EXIisting threads In the pool, as they are available, take
tasks from the queue to execute

Thread Pools

» Advantages:

« Usually slightly faster to service a request with an existing
thread than create a new thread

 Allows the number of threads in the application(s) to be
bound to the size of the pool

« Separating task to be performed from mechanics of creating
task allows different strategies for running task

* l.e.Tasks could be scheduled to run periodically

* Thread pools support: Windows, Android, ...

OpenMP

» Set of compiler directives and an APl for C, C++,
FORTRAN

* Provides support for parallel programming in shared-
memory environments

* |dentifies parallel regions — blocks of code that can run
In parallel

OpenMP

Create as many threads as there are cores:
#pragma omp parallel

Run for loop in parallel:

#pragma omp parallel for for (i=0;i<N;i++)
{
c[i] = a[i] + b[i];

#include <omp.h>
#include <stdio.h>

OpenMP
int main(int argc, char *argv([])

{

/* sequential code */

#pragma omp parallel

{

printf ("I am a parallel region.");

}

/* sequential code */

return 0;

Andre }

Interaction Between
Processes and Threads

* Process-level operations: fork() and exec()

» Should fork() copy all currently running threads? Or just
the one that called fork()?
« Some OSes provide both types of fork()

* Which one we choose depends on what the parent/child do
next

* |f the child calls exec() immediately after being created, then
we probably don’t need to copy all of the other threads

