Deadlock

Introduction to Operating Systems

Modeling Resource Contention

» System consists of resources

* Resource types R, R,, . . ., R,
CPU cycles, memory space, I/O devices

» Each resource type R, has W. instances.

* Each process utilizes a resource as follows:
* Request
» Use (exclusive)
* Release

Conditions for Deadlock

* Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource Is waiting
to acquire additional resources held by other processes

* No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task

 Circular walit: a process is holding onto a resource (R) while it is
waiting for some other resource that can only be released after R
IS released

Andrew H. Fagg: Introduction to Operating Systems 3

The Circular Walit Problem

A set {P,, P4, ..., P,} of waiting processes:
* P, Is walting for a resource that is held by P,

P, IS waliting for a resource that is held by P,
P, _, is waiting for a resource that is held by P,, and
* P, Is walting for a resource that is held by P,.

The Circular Walit Problem

Dining Philosophers problem:
* All philosophers have picked up one chopstick
« Each is waiting for their 2"d chopstick

* But none can be released until one of the philosophers
can pick up that 2" chopstick...

Resource Allocation Graph

* Vertices are of two types:

P ={P,, P,, ..., P,}, the set consisting of all the processes In
the system

*R={R,, R,, ..., R}, the set consisting of all resource types
In the system

* Request edge: directed edge P;—> R;

- Assignment edge: directed edge R, — P,

Andrew H. Fagg: Introduction to Operating Systems

Resource Allocation Graph: Notation

* Process Q

« Resource Type with 4 instances

oo
oo

oo
oo

» P, requests instance of R; _'

<.

* P; Is holding an instance of R

ot
oo

-

e State:

P1
P2

Nas
Nas

P3

NasS

R2 and Is waliting for R1
R2 and Is waiting for R3

R3

* Assuming no other allocation

requests, can all of the processes

complete execution?
* Yes!

Example: Resource Allocation Graph

Example 2: Resource Allocation Graph

R; Ry
e State: & o
\ \

* P1 has R2 and is waiting for R1
* P2 has R2 and is waiting for R3

* P3 has R3 and is waiting for R2 e @ @

* Assuming no other allocation
requests, can all of the processes \o
complete execution? S

* No! Everyone Is waiting on
somebody else

Example 3: Resource Allocation Graph

e State:

P1
P2
P3

D4

NasS
NasS
NasS

NasS

R2 and Is waliting for R1
R1
R1 and is walting for R2

R2

* Assuming no other allocation
requests, can all of the

processes complete execution?

e Yes!

/

Deadlock

How do we know If we have a deadlock?
* |f graph contains no cycles = no deadlock

* |f graph contains a cycle =
* |f only one instance per resource type, then deadlock
* |f several instances per resource type, possibility of deadlock

Dealing with Deadlocks

* Ensure that the system will never enter a deadlock
state:
« Deadlock prevention
« Deadlock avoidance

* Allow the system to enter a deadlock state and then
recover

* Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
iIncluding UNIX

Deadlock Prevention

Approach: we don’t allow one of the four necessary
conditions to hold

* Mutual Exclusion
* Hold and Wait

* NO preemption
 Circular wait

Deadlock Prevention

Mutual Exclusion
* Do not lock sharable resources (e.g., read-only files)
e But, this does not address non-sharable resources

Deadlock Prevention

Hold and Wait

» Guarantee that whenever a process requests a resource, It
does not hold any other resources

* One approach: process must request all resources up front,
as a single unit

* Another approach: only allow a process to request
resources only when the process has none allocated to it

* Problems: Low resource utilization; starvation possible

Deadlock Prevention

No Preemption:

* If a process that Is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are released

* Preempted resources are added to the list of resources
for which the process is waiting

* Process will be restarted only when it can regain its old
resources, as well as the new ones that it Is requesting

Deadlock Prevention

Circular Walit
* Impose a total ordering of all resource types

* Require that each process requests resources in an
iIncreasing order of enumeration

* Two processes cannot both block while waiting for
resources that are held by the opposite process

/* thread one runs in this function */

void *do work one(void *param)

{

Deadlock Example

Prevention:

e Could force total
ordering on the locks }

 Could force one thread
to give up locks when {
preempted

/*

volid *do work two (void *param)

pthread mutex lock(&first mutex);
pthread mutex lock (&second mutex);

/** * Do some work */
pthread mutex unlock (&second mutex) ;

pthread mutex unlock (&first mutex);

pthread exit (0);

thread two runs in this function */

pthread mutex lock (&second mutex) ;
pthread mutex lock (&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex) ;

pthread exit (0);

DeadIOCk Example volid transaction (Account from,

Account to,

Two different transactions execute double amount)
concurrently: {

* Transaction 1 transfers $25 from
account A to account B, and

mutex lockl, lock?2;
lockl = get lock(from);
lock2 = get lock(to);

e Transaction 2 transfers $50 from acquire (lockl) ;
account B to account A acquire (lock2) ;

F)] _ withdraw (from, amount):;
reventlon' deposit (to, amount);

 Could have a total ordering of release (lock?) ;
accounts release (lockl) ;

» Could require all resources to be
allocated simultaneously

Deadlock Prevention

» Kernel can take preventative steps
« Resource utilization could be poor

 Or the application programmer can take explicit steps
* E.g., ordering of lock operations
« Dealing with preemption

 This approach relies on programmers doing the right thing
» Generally, this is a bad idea...

Deadlock Avoidance

» Deadlock prevention technigues place a lot of
restrictions on what can be done

* |n particular: allocation decisions are made using uniformly
applied rules
* Next approach (avoidance): dynamically make
allocation decisions on a case-by-case basis

« Only allow an allocation to proceed if there Is no opportunity
In the current system for deadlock

Deadlock Avoidance

Process Model:

« Each process must declare up front the maximum
number of resources of each type that it may need to
complete execution

* Then, during execution, the process may request those
resources as they are actually needed
« Must respect the declared needs at the start

System State

Three possible situations:
» Deadlock: a circular wait has happened

« Safe: given the current allocations and the potential
allocation of the remaining needs, all processes can
complete without deadlock occurring

» Unsafe: deadlock has not occurred, but if the right set
of needs are requested, then deadlock will happen

Safe State

» System is in safe state if there exists a sequence <P,, P,, ..., P>
of ALL the executing processes such that:

* P, can allocate its remaining needs from the available resources, use
them, and then free all of its resources

« Each P, can allocate its remaining needs from the available resources
plus those that would be released by processes P, ... P,

e That Is:

* If P, resource needs are not immediately available, then P; can wait
until all P; have finished (where] <1)

P, can then obtain the needed resources, execute, return allocated
resources, and terminate

 When P, terminates, P, ,, IS guaranteed to be able to obtain its needed
resources, etc.

System State

Three possible situations:

 Deadlock: a circular walit has
nappened

» Safe: all processes can complete /
without deadlock occurring

» Unsafe: deadlock has not
occurred, but if the right set of
needs are requested, then
deadlock will happen

unsafe

deadlock

System Allocation Algorithm

» Goal: always stay In a safe state
* When a new reguest Is made by a process:

Kernel tests whether the new state will be safe or not
f safe, then allocation i1s allowed

f unsafe, then the process is placed in a waiting queue until
a safe state can be achieved

Avoidance Algorithms

* All resources are single-instance:

* We can just look at the resource allocation graph to
determine whether a cycle can happen

* Multiple instances of some resources:
» Use the Banker’s Algorithm to determine safe vs unsafe

Resource Allocation Graph Scheme

* Claim edge P; — R;indicates that process P; may request
resource R;; represented by a dashed line

« Claim edge converts to request edge when a process requests a
resource.

* Request edge: P; —» R; solid line
* Request edge converted to an assignment edge when the
resource Is allocated to the process
* Assignment edge: R;— P;solid line
 When a resource Is released by a process, assignment edge
reconverts back to a claim edge

 All resources must be claimed before any allocation requests are
made

Resource Allocation Graph

e P1:
* Claimed: R2
» Assigned R1
e P2:
« Claimed: R2
* Requested: R1

Two Independent questions: %

* If P1 requests R2, Is it safe to “u

assign it?

* If P2 requests R2, is it safe to
assign It?

Resource-Allocation Graph

Hypothetical: Assign R2 to P2:
 Now In an unsafe state!

* If P1 then requests R2, we
will have deadlock 0

Conclusion: we should not ..

assign R2 to P2 right now ‘M

A;

Resource Allocation Graph

e P1:
* Claimed: R2
» Assigned R1
e P2:
« Claimed: R2
* Requested: R1

Two Independent questions: %

* If P1 requests R2, Is it safe to “u

assign it?

* If P2 requests R2, is it safe to
assign It?

Resource Allocation Graph

Assign R2 to P1: R.
* We do not have a cycle

Conclusion: we can safely
perform this assignment e

Resource-Allocation Graph Algorithm

Suppose that process P; requests a resource R’

* The request can be granted only If converting the
request edge to an assignment edge does not result in
the formation of a cycle in the resource allocation graph

* |f a cycle would result, then the process is placed into a
waiting queue

This works great if there Is only one instance per
resource type

Banker’s Algorithm

» Multiple instances of each resource
* These are interchangeable instances

* Each process must claim the maximum use of
resources before any requests can be made

* When a process requests a resource it may have to wait

* When a process gets all its resources it must return
them and terminate in a finite amount of time

Data Structures for the
Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

« Available: Vector of length m. If available[j] == k, there are k instances of
resource type R; available to be allocated

* Max: n x m matrix. If Max]i,J]] == k, then process P, may request at most k
instances of resource type R;

« Allocation: n x m matrix. If Allocation[i,j]] == k then P, is currently allocated k
Instances of R

* Need: nx m matrix. If Need[i,]] == k, then P; may need k more instances of R;to

complete its task
Need [i,j]] = Max]i,j] — Allocation [i,]]

Banker’s Algorithm: Determining Safety

Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available
Finish [i] = falsefori=0,1,...,n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need, < Work /[NOTE: all resource needs of process i must be fulfillable
If no such i exists, go to step 4

3. Work = Work + Allocation,
Finish[i] = true
go to step 2
4. 1f Finish [i] == true for all i, then the system is in a safe state

Otherwise, it is unsafe

« Examples

Andrew H. Fagg: Introduction to Operating Systems

37

Using the Banker's Algorithm

Request; = request vector for process P,. If Request;[j] = k then process
P; wants k instances of resource type R;.Three cases:

1. If Request; > Need; raise error condition, since process has exceeded its
maximum claim

2. If Request, > Available, P, must wait, since the resources are not available

3. Pretend to allocate requested resources to P; by modifying the state as

follows:
Available = Available — Request;;
Allocation; = Allocation; + Request;;
Need; = Need, — Request;;
e If safe = the resources are allocated to P,
e |f unsafe = P, must wait, and the old resource-allocation state is restored

Banker's Example |ll

Process Allocation Max Available

A B C A B C A B C

D, 010 7 5 3 3 3 2
P 2 00 3 2 2
) 3 0 2 9 0 2
P 3 211 2 2 2
Pa o 0 2 4 3 3

https://www.geeksforgeeks.org/bankers-algorithm-in-operating-system-2/

Banker's Example |V

New request by Process 1: 1,0,2

 Will we be In a safe state?

Process Allocation Max Available
A B C A B C A B C

D, 010 7 5 3 3 3 2

) 2 00 3 2 2

) 30 2 9 0 2

F 3 211 2 2 2

Pa 0.0 ond 4 3 3

Deadlock Summary

Necessary and sufficient conditions for deadlock (all must
be true):

* Mutual Exclusion
* Hold and Wait

* NO preemption
 Circular wait

Deadlock Summary

Deadlock Prevention:

* Fixed set of rules that apply to all situations
 Remove one of the necessary conditions

* Simple

« But: can be overly conservative and may not give us
good use of the available resources

Deadlock Summary

Deadlock Avoidance:

* Make context-specific decisions on the fly as to whether
an allocation request should be granted

* Single instance per resource type:
« Use allocation graph
* |f an allocation results in a cycle, then do not grant it

* Multiple instances per resource type:

» Banker’s Algorithm
« |f an allocation results in an unsafe state, then do not grant it

