Synchronization

CS 3113

The Challenge of Concurrency

* Processes can execute concurrent

- May be interrupted at any time, only
execution

y

partially completing

« Concurrent access to shared data may result in data

Inconsistency

* Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

The Challenge of Concurrency

Producer-Consumer example:

» Shared circular buffer data structure:
* Array of values: DATATYPE buffer [BUFFER SIZE]
 Number of items Iin the buffer: int counter
* Next location to put a new item: int in
* Next location to pull an item from: int out

* Producer and consumer processes both access these
same variables in memory

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER SIZE) ;
/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

counter++;

consumer

while (true) {
while (counter == 0)

; /* do nothing */

next consumed = buffer|out];
out = (out + 1) % BUFFER SIZE;

counter—--;

/* consume the item in next consumed */

Possible Race Condition

e counter++ couldbe implemented as

registerl = counter
registerl = registerl + 1
counter = registerl

* counter—-— couldbe implemented as

register2 = counter
register2 = register2 -1
counter = register2

Andrew H. Fagg: Introduction to Operating Systems

Possible Race Condition

« Assume count =15
« Both consumer and producer attempt to access the array at the same time

* Processes could be interleaved at the instruction level in this way:

SO: producer execute registerl = counter {registerl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2:. consumer execute register2 counter {reqgister2 = 5}
S3: consumer execute register2 register2 - 1 {reqister2 =4}
S4: producer execute counter = registerl {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Andrew H. Fagg: Introduction to Operating Systems

The Critical Section Problem

 Consider system of n processes {Py, Pys -« Pn.1}

» Each process has critical section segment of code

* Process may be changing common variables: updating a table,
writing a file, etc

* When one process is in the critical section, no other may be In its
critical section

* Critical section problem: design a protocol for interaction
and execution that enforces non-overlapping execution of
critical sections

The Critical Section Problem

Critical section problem - One approach:

* Each process must ask permission to enter critical

section In
* Processt
* Processt

an entry section of code
nen executes critical section code

nen executes exit section of code

 Then, execute the remainder section

Andrew H. Fagg: Introduction to Operating Systems

Critical Sections In Code

do {

entry section

critical section

exit section

remainder section

} while (true);

Andrew H. Fagg: Introduction to Operating Systems

10

Properties of a Proper Solution to
the Critical Section Problem

1. Mutual Exclusion: If process P; Is executing In its critical
section, then no other processes can be executing in their
critical sections

2. Progress: If no process Is executing In Its critical section
and there exist some processes that wish to enter their
critical section, then one of these processes must be
allowed to proceed

3. Bounded Waiting: A process that is waiting to enter its
critical section can only wait for a defined amount of time

Peterson’ s Solution:
Two Process Solution

« Assume that the 1load and store machine-language instructions are
atomic; that is, cannot be interrupted

* The two processes share two variables:
* int turn;
* Boolean flag[2]

 The variable turn Indicates whose turn it Is to enter the critical section

 The £1ag array Is used to indicate if a process is ready to enter the
critical section.
- flag[i] = true implies that process P; is ready

Algorithm for Process P;

(other Process is P))

do {
flag[i] = true;
turn = j;
while (flag[j] && turn == j);

critical section
flag[i] = false;

remainder section
} while (true);

Peterson’s Solution

Provable that the three critical section requirements are
met:

1. Mutual exclusion is preserved
P. enters CS only If:
either £flag[j] = false Or turn = j
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Synchronization Hardware

* Many modern microprocessors provide hardware
support for implementing the critical section code

* Provide mechanism that implements a lock

* Then, we use the lock to protect our critical sections:

* Must “grab” the lock before starting to execute the critical section
 After execution, must release the lock

Synchronization Hardware

» Uniprocessors: could disable interrupts
 Currently running code would execute without preemption

* Generally too Inefficient on multiprocessor systems
« Operating systems using this not broadly scalable

* Modern machines provide special atomic hardware

Instructions
« Atomic = non-interruptible
* Either test memory word and set value simultaneously
* Or swap contents of two memory words

Critical Section Solution: Using A Lock

do {
acquire lock
critical section
release lock
remainder section
} while (TRUE) ;

Test and Set Instruction

Effective behavior, but within a single instruction:
boolean test and set (boolean *target)
{
boolean rv = *target;
*target = TRUE;
return rv:
}
1.Executed atomically
2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE".

Using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
e Solution:

do {
while (test and set(&lock))

; /* do nothing */
/* critical section */
lock = false;
/* remainder section */

} while (true);

compare_and_swap Instruction

Effective behavior, except it is a single instruction:

int compare and swap(int *value, int expected, int new value) ({

int temp = *value;

if (*value == expected)
*value = new value;

return temp;

}
1. Executed atomically
2. Returns the original value of passed parameter “value”

3. Set the variable “value” to the value of the passed parameter “new_value”,
but only if “value” =="expected”.

That is, the swap takes place only under this condition.

Critical Sections with
compare _and_swap()

« Shared integer “lock” initialized to O;
» Solution:

do {
while (compare and swap(&lock, 0, 1) !'= 0)

; /* do nothing */
/* critical section */
lock = 0;

/* remainder section */

} while (true);

Challenges with this Use
of our Hardware Solutions

Does test_and_set() satisfy our Critical Section
Properties?

 Mutual exclusion: Yes
* Progress: Yes

* Bounded wait: no guarantees

* Another process can always check the lock at the right time
and capture it

* Thus, starving another process

do {
waiting[i] = true;

Bounded-waiting Mutual key = true;

while (waiting[i] && key)

EXClUSIOn Wlth key = test and set(&lock);
test and Set waiting[i] = false;
— — /* critical section */
 lock == true -> a process Is
executing a critical section (or // Release the lock
about to execute) j = (i+1) % n;
while ((j '= i) && 'waiting[j])

* lock == false -> no processes are

. . . . 1 = - 1 g :
waiting to execute a critical section J(j ==‘3i;') &
lock = false;
* Because we test all processes in else
round-robin fashion, we guarantee waiting[j] = false;
that each gets an opportunity to /* remainder section */

execute } while (true);

Bounded-waiting Mutual
Exclusion with
test and set

do {

waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test and set(&lock);
waiting[i] = false;

/* critical section */

// Release the lock

j=(1+1) % n;

while ((j !'= i) && 'waiting[j])
j=(J +1) % n;

if (j == i)
lock = false;

else
waiting[j] = false;

/* remainder section */

} while (true);

Mutex Locks

* Previous solutions are complicated and generally
Inaccessible to application programmers

» OS designers build software tools to solve critical
section problem

» Simplest iIs mutex lock

Mutex Locks

 Protect a critical section by first acquire() a lock then
release() the lock

* Boolean variable indicating if lock is available or not

» Calls to acquire() and release() must be atomic
« Usually implemented via hardware atomic instructions

* But this solution requires busy waiting
 This lock therefore called a spinlock

acquire() and release():
Logical Implementation

acquire () {
while ('available)

; /* busy wait */
available = false;

}

release () {

available = true;

}

acquire() and release(): Usage

do {
acquire ()
critical section
release ()
remainder section
} while (true);

Semaphores

« Synchronization tool that provides more sophisticated
ways (than Mutex locks) for processes to synchronize
their activities.

* Semaphore S: integer variable

« Can only be accessed via two indivisible (atomic) operations:
wait() and signal()

* Originally called P() and V() by Dijkstra

Semaphores: Logical Definition

wait (S) {
while (S <= 0)
; // busy wait
S——;
}

signal (S) {
S++;
}

* Implementation guarantees safe access to S

Semaphores: Usage

* Binary semaphore: integer value can range only
between O and 1

« Same as a mutex lock

* Counting semaphore: integer value can range over an
unrestricted domain
« Can solve a wider range of synchronization problems
 But, can still implement a Binary Semaphore

Semaphores: Usage

Consider two concurrent processes: P1 and P2
« S1 (part of P1) must happen before S2 (part of P2)
« Semaphore “synch” is initialized to O
P1:
// other code
S1;
signal (synch) ;
// other code

P2:
// other code
walt (synch) ;
S2;
// other code

Semaphore Detalls

* Implementations of wait () and signal () Mmust guarantee
that the same semaphore variable is not accessed by more
than one process at the same time

 With their use, we can still have the busy waiting problem

* Less of a problem if processes spending very little time inside of
their critical sections

* But, If processes are spending lots of time in the critical section,
then busy waiting is a big problem

Semaphore Implementation
with no Busy Waliting

* With each semaphore there is an associated waiting queue

« Each entry in a waiting queue has two data items:
» value (of type integer). semaphore variable
« pointer to a FIFO queue of processes waiting on the semaphore

« Two operations:
* Block: place the process invoking the operation on the appropriate waiting queue
« Wakeup: remove one of processes in the waiting queue and place it in the ready queue

typedef struct{
int value;
struct process *list;

} semaphore;

Semaphore
Implementation wait(semaphore *s) {
with no Busy Waiting 3 >vatue

if (S->value < 0) {
add this process to S->list;

Not shown: \ block ()7
operations on the }

value and the queue

must be atomic signal (semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;
wakeup (P) ;

Example: Bounded-Buffer Problem

 Buffer that contains n entries

 Data structure Is shared by both producers and
consumers

* Must protect the buffer from being accessed by more
than one process at once

* Want to avoid busy-waiting in two cases:

* Producer busy-waiting if the buffer has no room for new
items

« Consumer is busy-waiting if the buffer has no items

Example: Bounded-Buffer Problem

Data Structure:

« Semaphore mutex initialized to the value 1

« Used to protect the buffer data structure from being
accessed by more than one process

* Buffer of size n

 Semaphore full initialized to the value O
« Counts how many items are in the buffer

» Semaphore empty Initialized to the value n
« Counts how many open spaces are in the buffer

do

Producer

/;.broduce an item in next produced */

wait (empty) ;
wait (mutex) ;

/* add next produced to the buffer */

signal (mutex) ;
signal (full) ;
} while (true);

do

consumer

wait (£full) ;
wait (mutex) ;

/* remove an item from buffer to next consumed * /

signal (mutex) ;
signal (empty) ;

/* consume the item in next consumed */

} while (true) :

Andrew H. Fagg: Introduction to Operating Systems

41

Semaphores

* The version we have been working with:

* No busy waiting. If a process wait()s on a “busy”
semaphore, then it is placed into a waiting queue

« Counting semaphores: allows us to express having some
number of a specific resource type

* Producer/Consumer problem with a buffer

« Counting semaphores to express how many used or unused
slots there are in a circular buffer

 Binary semaphore to protect the buffer data structure itself

Andrew H. Fagg: Introduction to Operating Systems

43

Readers-Writers Problem

* A data set Is shared among a number of concurrent
Processes
* Readers: only read the data set; they do not perform any updates
 \Writers: can both read and write

* Problem:
 Allow multiple readers to read at the same time
* Only one single writer can access the shared data at the same
time
» Several variations of how readers and writers are
considered ... all involve some form of priorities

Readers-Writers Solution
Shared data:

e Data set

» Semaphore rw_mutex Initialized to 1

1 = no readers/writers: 0 = a writer or some number of readers

* Integer read count initialized to 0
 Number of processes actively reading the data set

 Semaphore mutex Initialized to 1

* Protects read_count from being accessed/modified by more than
one process

do

Writer

wait (rw _mutex);

/* writing is performed */

signal (rw_mutex) ;
} while (true);

Reader

do {

wait (mutex) ;
read count++;
if (read count == 1)

wait (rw_mutex) ;

signal (mutex) ;

/* reading is performed */

wait (mutex) ;
read count--;
if (read count == 0)

signal (rw_mutex) ;
signal (mutex) ;

} while (true);

// First reader

// Last reader

Readers-Writers Problem: Variations

* First variation: no reader kept waiting unless writer has
permission to use shared object

* Second variation: once writer is ready, it performs the
write ASAP

* Both may have starvation, leading to even more
variations

* Problem Is solved on some systems by kernel providing
reader-writer locks

Dining-Philosophers Problem

* Philosophers spend their lives alternating thinking and
eating

* They don't interact with their neighbors

* Occasionally each tries to pick up 2 chopsticks (one at a
time) to eat from bowl

 Need both to eat, then release both when done

* In the case of 5 philosophers, the shared data are: <

* Bowl of rice (data set) ~
: C e 1. = 0
« Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem:

Candidate Solution
The structure of Philosopher I:

do {
wait (chopstick[i]),
wait (chopStick[(1 + 1) % 5]),
// eat

signal (chopstick[i])
signal (chopstick|[(i + 1) % 5])

// think
} while (TRUE) ;

What is the problem with this algorithm?

Dining-Philosophers Problem:
Candidate Solution

What Is the problem with this algorithm?

* We could end up with a situation where all of the
philosophers have picked up exactly one chopstick

* At this stage, each is waiting for the next chopstick
 But: none will release until after another releases
* This Is called deadlock!

* How do we solve this?

Dining-Philosophers Problem:
A Second Solution

How do we solve the dead
 Observation 1: at most 2

ock problem?

ohilosophers can eat at the

same time (using 4 chopsticks)

* Observation 2: if we can prevent all five of the
philosophers from picking up the first chopstick
simultaneously, then we can guarantee that at least one
can pick up the second chopstick

Dining-Philosophers Problem:
A Second Solution

* Introduce another common semaphore. Call it flag
* Initialize to 4

» Before picking up the first chopstick, the philosophers
must wait on the flag

* Once done with their chopsticks, they must signal the
flag

Dining-Philosophers Problem:

A Second Solution
The structure of Philosopher i:

do {
wait (flag) ;
wait (chopstick[i]),
wait (chopStick[(1 + 1) % 5]),

// eat

signal (chopstick[i])
signal (chopstick[(i + 1) % 5])
signal (flag)
// think
} while (TRUE) ;

Dining-Philosophers Problem:
A Second Solution

* Up to four philosophers can grab the flag at once
 The fifth must wait until the flag becomes positive again

* This ensures that at least one philosopher can grab two
chopsticks once they have the flag

Deadlock

Deadlock: two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes

 Let Sand Q be two semaphores initialized to 1

P, Py
wait(S) ; wait(Q) ;
wait (Q) ; wait (S);
signal (S) ; signal (Q) ;

signal (Q) ; signal (S) ;

Starvation: Indefinite Blocking

A process may never be removed from the semaphore
gueue In which It Is suspended

* The semaphore/mutex might still be released, but
another waiting process can get it first

Problems with Semaphores

 Deadlock and starvation

* [ncorrect use of semaphore operations:
« signal (mutex) wait (mutex)

« walit (mutex) ... wait (mutex)

« Omitting wait (mutex) or signal (mutex) (or both)

Next Topic: Deadlock

* Formal definition
* Techniques for preventing it

