
Synchronization
CS 3113



The Challenge of Concurrency

• Processes can execute concurrently

• May be interrupted at any time, only partially completing 

execution

• Concurrent access to shared data may result in data 

inconsistency

• Maintaining data consistency requires mechanisms to 

ensure the orderly execution of cooperating processes
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The Challenge of Concurrency

Producer-Consumer example:

• Shared circular buffer data structure:
• Array of values: DATATYPE buffer[BUFFER_SIZE]

• Number of items in the buffer: int counter

• Next location to put a new item: int in

• Next location to pull an item from: int out

• Producer and consumer processes both access these 
same variables in memory
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Producer
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while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 



Consumer
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while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 



Possible Race Condition
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• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2



Possible Race Condition
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• Assume count = 5

• Both consumer and producer attempt to access the array at the same time

• Processes could be interleaved at the instruction level in this way:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}



The Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables: updating a table, 

writing a file, etc

• When one process is in the critical section, no other may be in its 

critical section

• Critical section problem: design a protocol for interaction 

and execution that enforces non-overlapping execution of 

critical sections
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The Critical Section Problem

Critical section problem - One approach:

• Each process must ask permission to enter critical 

section in an entry section of code 

• Process then executes critical section code

• Process then executes exit section of code

• Then, execute the remainder section
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Critical Sections in Code
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Properties of a Proper Solution to 
the Critical Section Problem

1. Mutual Exclusion: If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections

2. Progress: If no process is executing in its critical section 

and there exist some processes that wish to enter their 

critical section, then one of these processes must be 

allowed to proceed

3. Bounded Waiting: A process that is waiting to enter its 

critical section can only wait for a defined amount of time
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Peterson’s Solution: 
Two Process Solution

• Assume that the load and store machine-language instructions are 
atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn; 

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section

• The flag array is used to indicate if a process is ready to enter the 
critical section.

• flag[i] = true implies that process Pi is ready
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Algorithm for Process Pi

(other Process is Pj) 
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do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 



Peterson’s Solution

Provable that the three critical section requirements are 

met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = j

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Synchronization Hardware

• Many modern microprocessors provide hardware 

support for implementing the critical section code

• Provide mechanism that implements a lock

• Then, we use the lock to protect our critical sections:

• Must “grab” the lock before starting to execute the critical section 

• After execution, must release the  lock
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Synchronization Hardware

• Uniprocessors: could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware 

instructions
• Atomic = non-interruptible

• Either test memory word and set value simultaneously

• Or swap contents of two memory words
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Critical Section Solution: Using A Lock
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do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 



Test and Set Instruction

Effective behavior, but within a single instruction:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.
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Using test_and_set()

• Shared Boolean variable lock, initialized to FALSE

• Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true); 
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compare_and_swap Instruction
Effective behavior, except it is a single instruction:

int compare_and_swap(int *value, int expected, int new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set  the variable “value”  to the value of the passed parameter “new_value”,

but only if “value” ==“expected”. 

That is, the swap takes place only under this condition.
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Critical Sections with 
compare_and_swap()

• Shared integer  “lock” initialized to 0; 

• Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Challenges with this Use 
of our Hardware Solutions

Does test_and_set() satisfy our Critical Section 
Properties?

• Mutual exclusion: Yes

• Progress: Yes

• Bounded wait: no guarantees
• Another process can always check the lock at the right time 

and capture it

• Thus, starving another process
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Bounded-waiting Mutual 
Exclusion with 
test_and_set

• lock == true -> a process is 
executing a critical section (or 
about to execute)

• lock == false -> no processes are 
waiting to execute a critical section

• Because we test all processes in 
round-robin fashion, we guarantee 
that each gets an opportunity to 
execute
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do {
waiting[i] = true;
key = true;
while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

/* critical section */ 

// Release the lock

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

/* remainder section */ 

} while (true); 



Bounded-waiting Mutual 
Exclusion with 
test_and_set
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do {
waiting[i] = true;
key = true;
while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

/* critical section */ 

// Release the lock

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

/* remainder section */ 

} while (true); 



Mutex Locks

• Previous solutions are complicated and generally 
inaccessible to application programmers

• OS designers build software tools to solve critical 
section problem

• Simplest is mutex lock
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Mutex Locks

• Protect a critical section by first acquire() a lock then 
release() the lock

• Boolean variable indicating if lock is available or not

• Calls to acquire() and release() must be atomic
• Usually implemented via hardware atomic instructions

• But this solution requires busy waiting
• This lock therefore called a spinlock
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acquire() and release(): 
Logical Implementation
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acquire() {

while (!available) 

; /* busy wait */ 

available = false; 

} 

release() { 

available = true; 

} 



acquire() and release(): Usage

do { 

acquire()

critical section

release()

remainder section 

} while (true); 

Andrew H. Fagg: Introduction to Operating Systems 29



Semaphores

• Synchronization tool that provides more sophisticated 
ways (than Mutex locks)  for processes to synchronize 
their activities.

• Semaphore S: integer variable
• Can only be accessed via two indivisible (atomic) operations: 

wait() and signal()

• Originally called P() and V() by Dijkstra
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Semaphores: Logical Definition

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

signal(S) { 

S++;

}

• Implementation guarantees safe access to S
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Semaphores: Usage

• Binary semaphore: integer value can range only 
between 0 and 1

• Same as a mutex lock

• Counting semaphore: integer value can range over an 
unrestricted domain

• Can solve a wider range of synchronization problems

• But, can still implement a Binary Semaphore
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Semaphores: Usage
Consider two concurrent processes: P1 and P2 

• S1 (part of P1) must happen before S2 (part of P2)

• Semaphore “synch” is initialized to 0 

P1:

// other code

S1;

signal(synch);

// other code

P2:

// other  code

wait(synch);

S2;

// other code
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Semaphore Details

• Implementations of wait() and signal() must guarantee 

that the same semaphore variable is not accessed by more 

than one process at the same time

• With their use, we can still have the busy waiting problem

• Less of a problem if processes spending very little time inside of 

their critical sections

• But, if processes are spending lots of time in the critical section, 

then busy waiting is a big problem
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Semaphore Implementation 
with no Busy Waiting 

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer): semaphore variable

• pointer to a FIFO queue of processes waiting on the semaphore

• Two operations:

• Block: place the process invoking the operation on the appropriate waiting queue

• Wakeup: remove one of processes in the waiting queue and place it in the ready queue

typedef struct{ 

int value; 

struct process *list; 

} semaphore; 
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Semaphore 
Implementation 

with no Busy Waiting 
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wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 

Not shown: 
operations on the 
value and the queue 
must be atomic



Example: Bounded-Buffer Problem

• Buffer that contains n entries

• Data structure is shared by both producers and 
consumers

• Must protect the buffer from being accessed by more 
than one process at once

• Want to avoid busy-waiting in two cases:
• Producer busy-waiting if the buffer has no room for new 

items

• Consumer is busy-waiting if the buffer has no items
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Example: Bounded-Buffer Problem

Data Structure:

• Semaphore mutex initialized to the value 1

• Used to protect the buffer data structure from being 
accessed by more than one process

• Buffer of size n

• Semaphore full initialized to the value 0

• Counts how many items are in the buffer

• Semaphore empty initialized to the value n

• Counts how many open spaces are in the buffer
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Producer

do { 

...
/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...
/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Consumer

do { 

wait(full); 

wait(mutex); 

...
/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...
/* consume the item in next consumed */ 

...
} while (true); 
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Semaphores

• The version we have been working with:
• No busy waiting.  If a process wait()s on a “busy” 

semaphore, then it is placed into a waiting queue

• Counting semaphores: allows us to express having some 
number of a specific resource type

• Producer/Consumer problem with a buffer
• Counting semaphores to express how many used or unused 

slots there are in a circular buffer

• Binary semaphore to protect the buffer data structure itself
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Readers-Writers Problem

• A data set is shared among a number of concurrent 

processes

• Readers: only read the data set; they do not perform any updates

• Writers: can both read and write

• Problem:

• Allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same 

time

• Several variations of how readers and writers are 

considered  … all involve some form of priorities
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Readers-Writers Solution
Shared data:

• Data set

• Semaphore rw_mutex initialized to 1

• 1 = no readers/writers; 0 = a writer or some number of readers

• Integer read_count initialized to 0

• Number of processes actively reading the data set

• Semaphore mutex initialized to 1

• Protects read_count from being accessed/modified by more than 
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Writer

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Reader
do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); // First reader

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); // Last reader

signal(mutex); 
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Readers-Writers Problem: Variations

• First variation: no reader kept waiting unless writer has 
permission to use shared object

• Second variation: once writer is ready, it performs the 
write ASAP

• Both may have starvation, leading to even more 
variations

• Problem is solved on some systems by kernel providing 
reader-writer locks
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Dining-Philosophers Problem
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• Philosophers spend their lives alternating thinking and 

eating

• They don’t interact with their neighbors

• Occasionally each tries to pick up 2 chopsticks (one at a 

time) to eat from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers, the shared data are:

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1



Dining-Philosophers Problem: 
Candidate Solution 

The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

What is the problem with this algorithm?
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Dining-Philosophers Problem: 
Candidate Solution 

What is the problem with this algorithm?

• We could end up with a situation where all of the 
philosophers have picked up exactly one chopstick

• At this stage, each is waiting for the next chopstick

• But: none will release until after another releases

• This is called deadlock!

• How do we solve this?
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Dining-Philosophers Problem: 
A Second Solution

How do we solve the deadlock problem?

• Observation 1: at most 2 philosophers can eat at the 
same time (using 4 chopsticks)

• Observation 2: if we can prevent all five of the 
philosophers from picking up the first chopstick 
simultaneously, then we can guarantee that at least one 
can pick up the second chopstick
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Dining-Philosophers Problem: 
A Second Solution

• Introduce another common semaphore.  Call it flag

• Initialize to 4

• Before picking up the first chopstick, the philosophers 
must wait on the flag

• Once done with their chopsticks, they must signal the 
flag
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Dining-Philosophers Problem: 
A Second Solution 

The structure of Philosopher i:
do { 

wait (flag) ;

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

signal (flag);

//  think

} while (TRUE);
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Dining-Philosophers Problem: 
A Second Solution

• Up to four philosophers can grab the flag at once
• The fifth must wait until the flag becomes positive again

• This ensures that at least one philosopher can grab two 
chopsticks once they have the flag
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Deadlock

Deadlock: two or more processes are waiting indefinitely for an event 

that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);             signal(Q);

signal(Q);             signal(S);
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Starvation: Indefinite Blocking

A process may never be removed from the semaphore 
queue in which it is suspended

• The semaphore/mutex might still be released, but 
another waiting process can get it first
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Problems with Semaphores

• Deadlock and starvation

• Incorrect use of semaphore operations:
• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting wait (mutex) or signal (mutex) (or both)
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Next Topic: Deadlock

• Formal definition

• Techniques for preventing it
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