
Synchronization
CS 3113

The Challenge of Concurrency

• Processes can execute concurrently

• May be interrupted at any time, only partially completing

execution

• Concurrent access to shared data may result in data

inconsistency

• Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes

Andrew H. Fagg: Introduction to Operating Systems 2

The Challenge of Concurrency

Producer-Consumer example:

• Shared circular buffer data structure:
• Array of values: DATATYPE buffer[BUFFER_SIZE]

• Number of items in the buffer: int counter

• Next location to put a new item: int in

• Next location to pull an item from: int out

• Producer and consumer processes both access these
same variables in memory

Andrew H. Fagg: Introduction to Operating Systems 3

Producer

Andrew H. Fagg: Introduction to Operating Systems 4

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Consumer

Andrew H. Fagg: Introduction to Operating Systems 5

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Possible Race Condition

Andrew H. Fagg: Introduction to Operating Systems 6

• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

Possible Race Condition

Andrew H. Fagg: Introduction to Operating Systems 7

• Assume count = 5

• Both consumer and producer attempt to access the array at the same time

• Processes could be interleaved at the instruction level in this way:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

The Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables: updating a table,

writing a file, etc

• When one process is in the critical section, no other may be in its

critical section

• Critical section problem: design a protocol for interaction

and execution that enforces non-overlapping execution of

critical sections

Andrew H. Fagg: Introduction to Operating Systems 8

The Critical Section Problem

Critical section problem - One approach:

• Each process must ask permission to enter critical

section in an entry section of code

• Process then executes critical section code

• Process then executes exit section of code

• Then, execute the remainder section

Andrew H. Fagg: Introduction to Operating Systems 9

Critical Sections in Code

Andrew H. Fagg: Introduction to Operating Systems 10

Properties of a Proper Solution to
the Critical Section Problem

1. Mutual Exclusion: If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress: If no process is executing in its critical section

and there exist some processes that wish to enter their

critical section, then one of these processes must be

allowed to proceed

3. Bounded Waiting: A process that is waiting to enter its

critical section can only wait for a defined amount of time
Andrew H. Fagg: Introduction to Operating Systems 11

Peterson’s Solution:
Two Process Solution

• Assume that the load and store machine-language instructions are
atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn;

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section

• The flag array is used to indicate if a process is ready to enter the
critical section.

• flag[i] = true implies that process Pi is ready

Andrew H. Fagg: Introduction to Operating Systems 13

Algorithm for Process Pi

(other Process is Pj)

Andrew H. Fagg: Introduction to Operating Systems 14

do {

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

Peterson’s Solution

Provable that the three critical section requirements are

met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = j

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Andrew H. Fagg: Introduction to Operating Systems 15

Synchronization Hardware

• Many modern microprocessors provide hardware

support for implementing the critical section code

• Provide mechanism that implements a lock

• Then, we use the lock to protect our critical sections:

• Must “grab” the lock before starting to execute the critical section

• After execution, must release the lock

Andrew H. Fagg: Introduction to Operating Systems 16

Synchronization Hardware

• Uniprocessors: could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware

instructions
• Atomic = non-interruptible

• Either test memory word and set value simultaneously

• Or swap contents of two memory words

Andrew H. Fagg: Introduction to Operating Systems 17

Critical Section Solution: Using A Lock

Andrew H. Fagg: Introduction to Operating Systems 18

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Test and Set Instruction

Effective behavior, but within a single instruction:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

Andrew H. Fagg: Introduction to Operating Systems 19

Using test_and_set()

• Shared Boolean variable lock, initialized to FALSE

• Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Andrew H. Fagg: Introduction to Operating Systems 20

compare_and_swap Instruction
Effective behavior, except it is a single instruction:

int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the variable “value” to the value of the passed parameter “new_value”,

but only if “value” ==“expected”.

That is, the swap takes place only under this condition.

Andrew H. Fagg: Introduction to Operating Systems 21

Critical Sections with
compare_and_swap()

• Shared integer “lock” initialized to 0;

• Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

Andrew H. Fagg: Introduction to Operating Systems 22

Challenges with this Use
of our Hardware Solutions

Does test_and_set() satisfy our Critical Section
Properties?

• Mutual exclusion: Yes

• Progress: Yes

• Bounded wait: no guarantees
• Another process can always check the lock at the right time

and capture it

• Thus, starving another process

Andrew H. Fagg: Introduction to Operating Systems 23

Bounded-waiting Mutual
Exclusion with
test_and_set

• lock == true -> a process is
executing a critical section (or
about to execute)

• lock == false -> no processes are
waiting to execute a critical section

• Because we test all processes in
round-robin fashion, we guarantee
that each gets an opportunity to
execute

Andrew H. Fagg: Introduction to Operating Systems 24

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

// Release the lock

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

Bounded-waiting Mutual
Exclusion with
test_and_set

Andrew H. Fagg: Introduction to Operating Systems 25

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

// Release the lock

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

Mutex Locks

• Previous solutions are complicated and generally
inaccessible to application programmers

• OS designers build software tools to solve critical
section problem

• Simplest is mutex lock

Andrew H. Fagg: Introduction to Operating Systems 26

Mutex Locks

• Protect a critical section by first acquire() a lock then
release() the lock

• Boolean variable indicating if lock is available or not

• Calls to acquire() and release() must be atomic
• Usually implemented via hardware atomic instructions

• But this solution requires busy waiting
• This lock therefore called a spinlock

Andrew H. Fagg: Introduction to Operating Systems 27

acquire() and release():
Logical Implementation

Andrew H. Fagg: Introduction to Operating Systems 28

acquire() {

while (!available)

; /* busy wait */

available = false;

}

release() {

available = true;

}

acquire() and release(): Usage

do {

acquire()

critical section

release()

remainder section

} while (true);

Andrew H. Fagg: Introduction to Operating Systems 29

Semaphores

• Synchronization tool that provides more sophisticated
ways (than Mutex locks) for processes to synchronize
their activities.

• Semaphore S: integer variable
• Can only be accessed via two indivisible (atomic) operations:

wait() and signal()

• Originally called P() and V() by Dijkstra

Andrew H. Fagg: Introduction to Operating Systems 30

Semaphores: Logical Definition

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

signal(S) {

S++;

}

• Implementation guarantees safe access to S

Andrew H. Fagg: Introduction to Operating Systems 31

Semaphores: Usage

• Binary semaphore: integer value can range only
between 0 and 1

• Same as a mutex lock

• Counting semaphore: integer value can range over an
unrestricted domain

• Can solve a wider range of synchronization problems

• But, can still implement a Binary Semaphore

Andrew H. Fagg: Introduction to Operating Systems 32

Semaphores: Usage
Consider two concurrent processes: P1 and P2

• S1 (part of P1) must happen before S2 (part of P2)

• Semaphore “synch” is initialized to 0

P1:

// other code

S1;

signal(synch);

// other code

P2:

// other code

wait(synch);

S2;

// other code
Andrew H. Fagg: Introduction to Operating Systems 33

Semaphore Details

• Implementations of wait() and signal() must guarantee

that the same semaphore variable is not accessed by more

than one process at the same time

• With their use, we can still have the busy waiting problem

• Less of a problem if processes spending very little time inside of

their critical sections

• But, if processes are spending lots of time in the critical section,

then busy waiting is a big problem

Andrew H. Fagg: Introduction to Operating Systems 34

Semaphore Implementation
with no Busy Waiting

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer): semaphore variable

• pointer to a FIFO queue of processes waiting on the semaphore

• Two operations:

• Block: place the process invoking the operation on the appropriate waiting queue

• Wakeup: remove one of processes in the waiting queue and place it in the ready queue

typedef struct{

int value;

struct process *list;

} semaphore;
Andrew H. Fagg: Introduction to Operating Systems 35

Semaphore
Implementation

with no Busy Waiting

Andrew H. Fagg: Introduction to Operating Systems 36

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Not shown:
operations on the
value and the queue
must be atomic

Example: Bounded-Buffer Problem

• Buffer that contains n entries

• Data structure is shared by both producers and
consumers

• Must protect the buffer from being accessed by more
than one process at once

• Want to avoid busy-waiting in two cases:
• Producer busy-waiting if the buffer has no room for new

items

• Consumer is busy-waiting if the buffer has no items

Andrew H. Fagg: Introduction to Operating Systems 37

Example: Bounded-Buffer Problem

Data Structure:

• Semaphore mutex initialized to the value 1

• Used to protect the buffer data structure from being
accessed by more than one process

• Buffer of size n

• Semaphore full initialized to the value 0

• Counts how many items are in the buffer

• Semaphore empty initialized to the value n

• Counts how many open spaces are in the buffer

Andrew H. Fagg: Introduction to Operating Systems 38

Producer

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

Andrew H. Fagg: Introduction to Operating Systems 39

Consumer

do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

Andrew H. Fagg: Introduction to Operating Systems 40

Andrew H. Fagg: Introduction to Operating Systems 41

Semaphores

• The version we have been working with:
• No busy waiting. If a process wait()s on a “busy”

semaphore, then it is placed into a waiting queue

• Counting semaphores: allows us to express having some
number of a specific resource type

• Producer/Consumer problem with a buffer
• Counting semaphores to express how many used or unused

slots there are in a circular buffer

• Binary semaphore to protect the buffer data structure itself

Andrew H. Fagg: Introduction to Operating Systems 42

Andrew H. Fagg: Introduction to Operating Systems 43

Readers-Writers Problem

• A data set is shared among a number of concurrent

processes

• Readers: only read the data set; they do not perform any updates

• Writers: can both read and write

• Problem:

• Allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same

time

• Several variations of how readers and writers are

considered … all involve some form of priorities
Andrew H. Fagg: Introduction to Operating Systems 44

Readers-Writers Solution
Shared data:

• Data set

• Semaphore rw_mutex initialized to 1

• 1 = no readers/writers; 0 = a writer or some number of readers

• Integer read_count initialized to 0

• Number of processes actively reading the data set

• Semaphore mutex initialized to 1

• Protects read_count from being accessed/modified by more than

one process Andrew H. Fagg: Introduction to Operating Systems 45

Writer

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

Andrew H. Fagg: Introduction to Operating Systems 46

Reader
do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex); // First reader

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex); // Last reader

signal(mutex);

} while (true); Andrew H. Fagg: Introduction to Operating Systems 47

Readers-Writers Problem: Variations

• First variation: no reader kept waiting unless writer has
permission to use shared object

• Second variation: once writer is ready, it performs the
write ASAP

• Both may have starvation, leading to even more
variations

• Problem is solved on some systems by kernel providing
reader-writer locks

Andrew H. Fagg: Introduction to Operating Systems 48

Dining-Philosophers Problem

Andrew H. Fagg: Introduction to Operating Systems 49

• Philosophers spend their lives alternating thinking and

eating

• They don’t interact with their neighbors

• Occasionally each tries to pick up 2 chopsticks (one at a

time) to eat from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers, the shared data are:

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem:
Candidate Solution

The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with this algorithm?

Andrew H. Fagg: Introduction to Operating Systems 50

Dining-Philosophers Problem:
Candidate Solution

What is the problem with this algorithm?

• We could end up with a situation where all of the
philosophers have picked up exactly one chopstick

• At this stage, each is waiting for the next chopstick

• But: none will release until after another releases

• This is called deadlock!

• How do we solve this?

Andrew H. Fagg: Introduction to Operating Systems 51

Dining-Philosophers Problem:
A Second Solution

How do we solve the deadlock problem?

• Observation 1: at most 2 philosophers can eat at the
same time (using 4 chopsticks)

• Observation 2: if we can prevent all five of the
philosophers from picking up the first chopstick
simultaneously, then we can guarantee that at least one
can pick up the second chopstick

Andrew H. Fagg: Introduction to Operating Systems 52

Dining-Philosophers Problem:
A Second Solution

• Introduce another common semaphore. Call it flag

• Initialize to 4

• Before picking up the first chopstick, the philosophers
must wait on the flag

• Once done with their chopsticks, they must signal the
flag

Andrew H. Fagg: Introduction to Operating Systems 53

Dining-Philosophers Problem:
A Second Solution

The structure of Philosopher i:
do {

wait (flag) ;

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

signal (flag);

// think

} while (TRUE);

Andrew H. Fagg: Introduction to Operating Systems 54

Dining-Philosophers Problem:
A Second Solution

• Up to four philosophers can grab the flag at once
• The fifth must wait until the flag becomes positive again

• This ensures that at least one philosopher can grab two
chopsticks once they have the flag

Andrew H. Fagg: Introduction to Operating Systems 55

Deadlock

Deadlock: two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Andrew H. Fagg: Introduction to Operating Systems 56

Starvation: Indefinite Blocking

A process may never be removed from the semaphore
queue in which it is suspended

• The semaphore/mutex might still be released, but
another waiting process can get it first

Andrew H. Fagg: Introduction to Operating Systems 57

Problems with Semaphores

• Deadlock and starvation

• Incorrect use of semaphore operations:
• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting wait (mutex) or signal (mutex) (or both)

Andrew H. Fagg: Introduction to Operating Systems 59

Next Topic: Deadlock

• Formal definition

• Techniques for preventing it

Andrew H. Fagg: Introduction to Operating Systems 60

