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Last Time

• Resistors
• Diodes
• Transistors
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Today

• A bit more on transistors
• Atmel microcontroller basics
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Atmel Mega8 Basics

• Complete, stand-
alone computer

• Ours is a 28-pin 
package

• Most pins:
– Are used for 

input/output
– How they are used 

is configurable
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Key Features
• Up to 16 MIPS (single cycle for most instructions)
• ~23 digital pins: configurable as inputs or outputs
• 6 channel, 10-bit analog-to-digital converter
• Serial communication support: RS232, SPI, I2C
• 3 counter/timers (2 8-bit; 1 16-bit)
• Internal/external interrupt support
• Brown-out detection
• Internal oscillator (1 MHz)
• Bootloader support
• Sleep mode
• Watchdog timer
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Interrupt Sources

• External pins: state change; falling/rising 
edge

• Timer/counters: when counter overflows
• Communication peripherals
• Brown out
• Analog to digital conversion complete
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Atmel Mega8 Basics

Power (we will use 
+5V)
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Atmel Mega8 Basics

Ground
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Atmel Mega8 Basics

Reset
• Bring low to reset 

the processor
• In general, we will 

tie this pin to high 
through a pull-up 
resistor (10K ohm)
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Atmel Mega8 Basics

PORT B
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Atmel Mega8 Basics

PORT C
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Atmel Mega8 Basics

PORT D
(all 8 bits are 

available)
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A First 
Circuit
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Common Special-Purpose 
Registers

• Program counter
• Status register
• Instruction register
• Stack pointer
• Peripheral control is all done through 

registers
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Atmel Mega8

8-bit data bus
• Primary 

mechanism 
for data 
exchange
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32 general 
purpose 
registers

• 8 bits wide
• 3 pairs of 

registers can 
be combined 
to give us 16 
bit registers

Atmel Mega8
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Special 
purpose 
registers

• Control of the 
internals of 
the 
processor

Atmel Mega8
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Random Access 
Memory (RAM)

• 1 KByte in size
• Stack is stored 

here

Atmel Mega8
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Flash (EEPROM)
• Program 

storage
• 8 KByte in size
• 16 bit words

Atmel Mega8
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EEPROM
• Permanent 

data storage

Atmel Mega8
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Arithmetic 
Logical Unit

• Data inputs 
from registers

• Control inputs 
not shown 
(derived from 
instruction 
decoder)

Atmel Mega8
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Processors in the Atmel Family

• Memory/program size
• Different numbers and types of I/O pins
• Custom support for other communication 

protocols (e.g., CANbus)
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Instruction Fetch/Execution Cycle

• While one instruction is being executed, the next is 
already being fetched from memory

• In many cases: each step happens on a single clock 
cycle

From Atmel Mega8 spec
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Instruction Execution Cycle

Address the registers and wait for the values 
to become available
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Instruction Execution Cycle

Perform the operation dictated by the 
instruction
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Instruction Execution Cycle

Result stored in destination register
Status register state changed
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I/O Pin Implementation

Single bit of 
PORT B
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I/O Pin Implementation

The physical 
pin
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I/O Pin Implementation

DDRB
• Defines 

whether 
this is an 
input or an 
output



Andrew H. Fagg: Embedded 
Systems: Atmel Basics

29

I/O Pin Implementation

PORTB
• Defines the 

value that 
is written 
out to the 
pin (if it is 
an output)
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I/O Pin Implementation

Tristate buffer
• When this 

pin is an 
output pin, it 
allows the 
PORTB flip-
flop to drive 
the pin
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I/O Pin Implementation

Input tri-state 
buffer
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Bit Manipulation

PORTB is a register
• Controls the value that is output by the set 

of port B pins
• But – all of the pins are controlled by this 

single register (which is 8 bits wide)

• In code, we need to be able to manipulate 
the pins individually
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Bit-Wise Operators

If A and B are bytes, what does this code 
mean?

C = A & B;

The corresponding bits of A and B are 
ANDed together
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Bit-Wise Operators

If A and B are bytes, what does this code 
mean?

C = A & B;
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Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B
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Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B
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Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B
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Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B
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Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B
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Bit-Wise Operators

Other Operators:
• OR:  |
• XOR: ^
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Bit Manipulation

Given a byte A, how do we set bit 2 
(counting from 0) of A to 1?
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Bit Manipulation

Given a byte A, how do we set bit 2 
(counting from 0) of A to 1?

A = A | 4;
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Bit Manipulation

Given a byte A, how do we set bit 2 
(counting from 0) of A to 0?
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Bit Manipulation

Given a byte A, how do we set bit 2 
(counting from 0) of A to 1?

A = A & 0xFB;
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A First 
Program

Flash the 
LEDs at a 
regular 
interval

• How do we 
do this?
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A First 
Program

How do we 
flash the LED 
at a regular 
interval?

• We toggle the 
state of PB0
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I/O Pin Implementation

Single bit of 
PORT B

DDRx

PORTx

PINx
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A First Program
main() {

DDRB = 0x3;   // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1;   // XOR bit 0 with 1
delay_ms(500);         // Pause for 500 msec
}

}
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A Second Program
main() {

DDRB = 0xFF;   // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1;   // XOR bit 0 with 1
delay_ms(500);         // Pause for 500 msec
PORTB = PORTB ^ 0x2;   // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2;   // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?
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A Second Program
main() {

DDRB = 0xFF;   // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1;   // XOR bit 0 with 1
delay_ms(500);         // Pause for 500 msec
PORTB = PORTB ^ 0x2;   // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2;   // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PB1  at 1 Hz
on PB0: 0.5 Hz
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More Bit Masking

• Suppose we have a 3-bit number (so 
values 0 … 7)

• Suppose we want to set the state of B3, 
B4, and B5 with this number (B3 is the 
least significant bit)

• How do we express this in code?
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Bit Masking
main() {

DDRB = 0xF8;   // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val;  // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7)        // Set the current B3-B5 to 0s
| ((val & 0x7))<<3);      // OR with new values (shifted

//  to fit within B3-B5
}
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Bit Masking
main() {

DDRB = 0xF8;   // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val;  // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7)        // Set the current B3-B5 to 0s
| ((val & 0x7))<<3);      // OR with new values (shifted

//  to fit within B3-B5)
}

B3-B7 are outputs; all others are still inputs (could 
be different depending on how other pins are used)
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Bit Masking
main() {

DDRB = 0xF8;   // Set pins B3, B4, B5, B6, B7 as outputs 

:
:

unsigned short val;  // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7)        // Set the current B3-B5 to 0s
| ((val & 0x7))<<3);      // OR with new values (shifted

//  to fit within B3-B5
}

“Mask out” the current values of pins B3-
B5 (leave everything else intact)
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Bit Masking
main() {

DDRB = 0xF8;   // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val;  // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7)        // Set the current B3-B5 to 0s
| ((val & 0x7))<<3);      // OR with new values (shifted

//  to fit within B3-B5
}

Substitute an arbitrary value into these 
bits
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Bit Masking
main() {

DDRB = 0xF8;   // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val;  // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7)        // Set the current B3-B5 to 0s
| ((val & 0x7))<<3);      // OR with new values (shifted

//  to fit within B3-B5
}

And use the result to change the output 
state of port B
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Reading the Digital State of Pins

Given: we want to read the state of PB6 and 
PB7 and obtain a value of 0 … 3

• How do we configure the port?
• How do we read the pins?
• How do we translate their values into an 

integer of 0 .. 3?
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Reading the Digital State of Pins
main() {

DDRB = 0x38;   // Set pins B3, B4, B5 as outputs
//   All others are inputs (suppose we care
//   about bits B6 and B7 only (so a 2-bit 
//    number)

:
:

unsigned short val, outval;  // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}
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I/O Pin Implementation

Single bit of 
PORT B

DDRx

PORTx

PINx
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Reading the Digital State of Pins
main() {

DDRB = 0x38;   // Set pins B3, B4, B5 as outputs
//   All others are inputs (suppose we care
//   about bits B6 and B7 only (so a 2-bit 
//    number)

:
:

unsigned short val, outval;  // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

B6 and B7 are configured as inputs
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Reading the Digital State of Pins
main() {

DDRB = 0x38;   // Set pins B3, B4, B5 as outputs
//   All others are inputs (suppose we care
//   about bits B6 and B7 only (so a 2-bit 
//    number)

:
:

unsigned short val, outval;  // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Read the value from the port
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Reading the Digital State of Pins
main() {

DDRB = 0x38;   // Set pins B3, B4, B5 as outputs
//   All others are inputs (suppose we care
//   about bits B6 and B7 only (so a 2-bit 
//    number)

:
:

unsigned short val, outval;  // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

“Mask out” all bits except B6 and B7
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Reading the Digital State of Pins
main() {

DDRB = 0x38;   // Set pins B3, B4, B5 as outputs
//   All others are inputs (suppose we care
//   about bits B6 and B7 only (so a 2-bit 
//    number)

:
:

unsigned short val, outval;  // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Right shift the result by 6 bits – so the value of B6 
and B7 are now in bits 0 and 1 of “outval”
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Port-Related Registers

The set of C-accessible register for controlling 
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional 
control
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A Note About the C/Atmel Book
The book uses C syntax that looks like this:
PORTA.0 = 0; // Set bit 0 to 0

This syntax is not available with our C compiler.  
Instead, you will need to use:

PORTA &= 0xFE;

or
PORTA &= ~1;

or
PORTA = PORTA & ~1;
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Putting It All Together

• Program development:
– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and 

other tools) to generate code on your laptop 
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will 

be able to program the chip without removing 
it from your circuit
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Physical Interface for Programming

AVR ISP
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Physical Interface for Programming

AVR ISP

USB 
connection to 
your laptop
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Physical Interface for Programming
AVR ISP

Header connection 
will connect to 
your circuit 
(through an 
adapter)

Be careful when 
you plug your 
circuit in (check 
before powering)
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AVR ISPs are Cranky
• When things are plugged in and powered, 

you should see two green LEDs on the 
ISP (on most units)

• One red: usually means that your circuit is 
not powered

• Orange: the programmer is confused
– Could be due to your circuit not being 

powered at 5V
– Could be due to other problems
– Check power and reboot the ISP
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A More Complicated Circuit

(for projects 2-5)
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A More Complicated Circuit
• Connect 

through 
adapter to 
AVR ISP

• Do not 
reverse the 
pins!
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A More Complicated Circuit

Extra LED 
allows you to 
see when a 
program is 
being 
downloaded
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A More Complicated Circuit
16 MHz crystal
• Optional!
• Without it, 

your 
processor will 
run at 1MHz 
(in general, 
we will use 
16MHz clock)
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Compiling and Downloading Code

• We will work through the details next 
Thursday.  Before then:
– See the Atmel HowTo (pointer from the 

schedule page)
– Windoze: Install AVR Studio and WinAVR
– OS X: Install OSX-AVR
– Linux: Install binutils, avr-gcc, avr-libc, and 

avrdude
• This works well now
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Compiling and Downloading Code

• Once the chip is programmed, the AVR 
ISP will automatically reset the processor; 
starting your program
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Hints

• Use LEDs to show status information (e.g., 
to indicate what part of your code is being 
executed)

• Have one LED blink in some unique way 
at the beginning of your program

• Go slow: 
– Implement and test incrementally
– Insert plenty of pauses into your code (e.g., 

with delay_ms())


