
Andrew H. Fagg: Embedded
Systems: Atmel Basics

1

Last Time

• Resistors
• Diodes
• Transistors

Andrew H. Fagg: Embedded
Systems: Atmel Basics

2

Today

• A bit more on transistors
• Atmel microcontroller basics

Andrew H. Fagg: Embedded
Systems: Atmel Basics

3

Atmel Mega8 Basics

• Complete, stand-
alone computer

• Ours is a 28-pin
package

• Most pins:
– Are used for

input/output
– How they are used

is configurable

Andrew H. Fagg: Embedded
Systems: Atmel Basics

4

Key Features
• Up to 16 MIPS (single cycle for most instructions)
• ~23 digital pins: configurable as inputs or outputs
• 6 channel, 10-bit analog-to-digital converter
• Serial communication support: RS232, SPI, I2C
• 3 counter/timers (2 8-bit; 1 16-bit)
• Internal/external interrupt support
• Brown-out detection
• Internal oscillator (1 MHz)
• Bootloader support
• Sleep mode
• Watchdog timer

Andrew H. Fagg: Embedded
Systems: Atmel Basics

5

Interrupt Sources

• External pins: state change; falling/rising
edge

• Timer/counters: when counter overflows
• Communication peripherals
• Brown out
• Analog to digital conversion complete

Andrew H. Fagg: Embedded
Systems: Atmel Basics

6

Atmel Mega8 Basics

Power (we will use
+5V)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

7

Atmel Mega8 Basics

Ground

Andrew H. Fagg: Embedded
Systems: Atmel Basics

8

Atmel Mega8 Basics

Reset
• Bring low to reset

the processor
• In general, we will

tie this pin to high
through a pull-up
resistor (10K ohm)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

9

Atmel Mega8 Basics

PORT B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

10

Atmel Mega8 Basics

PORT C

Andrew H. Fagg: Embedded
Systems: Atmel Basics

11

Atmel Mega8 Basics

PORT D
(all 8 bits are

available)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

12

A First
Circuit

Andrew H. Fagg: Embedded
Systems: Atmel Basics

13

Common Special-Purpose
Registers

• Program counter
• Status register
• Instruction register
• Stack pointer
• Peripheral control is all done through

registers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

14

Atmel Mega8

8-bit data bus
• Primary

mechanism
for data
exchange

Andrew H. Fagg: Embedded
Systems: Atmel Basics

15

32 general
purpose
registers

• 8 bits wide
• 3 pairs of

registers can
be combined
to give us 16
bit registers

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

16

Special
purpose
registers

• Control of the
internals of
the
processor

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

17

Random Access
Memory (RAM)

• 1 KByte in size
• Stack is stored

here

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

18

Flash (EEPROM)
• Program

storage
• 8 KByte in size
• 16 bit words

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

19

EEPROM
• Permanent

data storage

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

20

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

21

Processors in the Atmel Family

• Memory/program size
• Different numbers and types of I/O pins
• Custom support for other communication

protocols (e.g., CANbus)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

22

Instruction Fetch/Execution Cycle

• While one instruction is being executed, the next is
already being fetched from memory

• In many cases: each step happens on a single clock
cycle

From Atmel Mega8 spec

Andrew H. Fagg: Embedded
Systems: Atmel Basics

23

Instruction Execution Cycle

Address the registers and wait for the values
to become available

Andrew H. Fagg: Embedded
Systems: Atmel Basics

24

Instruction Execution Cycle

Perform the operation dictated by the
instruction

Andrew H. Fagg: Embedded
Systems: Atmel Basics

25

Instruction Execution Cycle

Result stored in destination register
Status register state changed

Andrew H. Fagg: Embedded
Systems: Atmel Basics

26

I/O Pin Implementation

Single bit of
PORT B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

27

I/O Pin Implementation

The physical
pin

Andrew H. Fagg: Embedded
Systems: Atmel Basics

28

I/O Pin Implementation

DDRB
• Defines

whether
this is an
input or an
output

Andrew H. Fagg: Embedded
Systems: Atmel Basics

29

I/O Pin Implementation

PORTB
• Defines the

value that
is written
out to the
pin (if it is
an output)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

30

I/O Pin Implementation

Tristate buffer
• When this

pin is an
output pin, it
allows the
PORTB flip-
flop to drive
the pin

Andrew H. Fagg: Embedded
Systems: Atmel Basics

31

I/O Pin Implementation

Input tri-state
buffer

Andrew H. Fagg: Embedded
Systems: Atmel Basics

32

Bit Manipulation

PORTB is a register
• Controls the value that is output by the set

of port B pins
• But – all of the pins are controlled by this

single register (which is 8 bits wide)

• In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded
Systems: Atmel Basics

33

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded
Systems: Atmel Basics

34

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

35

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

36

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

37

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

38

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

39

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

40

Bit-Wise Operators

Other Operators:
• OR: |
• XOR: ^

Andrew H. Fagg: Embedded
Systems: Atmel Basics

41

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

42

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A | 4;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

43

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 0?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

44

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A & 0xFB;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

48

A First
Program

Flash the
LEDs at a
regular
interval

• How do we
do this?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

49

A First
Program

How do we
flash the LED
at a regular
interval?

• We toggle the
state of PB0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

50

I/O Pin Implementation

Single bit of
PORT B

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

51

A First Program
main() {

DDRB = 0x3; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

52

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

53

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PB1 at 1 Hz
on PB0: 0.5 Hz

Andrew H. Fagg: Embedded
Systems: Atmel Basics

54

More Bit Masking

• Suppose we have a 3-bit number (so
values 0 … 7)

• Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

• How do we express this in code?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

55

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

56

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5)
}

B3-B7 are outputs; all others are still inputs (could
be different depending on how other pins are used)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

57

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

58

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

Substitute an arbitrary value into these
bits

Andrew H. Fagg: Embedded
Systems: Atmel Basics

59

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

And use the result to change the output
state of port B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

60

Reading the Digital State of Pins

Given: we want to read the state of PB6 and
PB7 and obtain a value of 0 … 3

• How do we configure the port?
• How do we read the pins?
• How do we translate their values into an

integer of 0 .. 3?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

61

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

62

I/O Pin Implementation

Single bit of
PORT B

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

63

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

B6 and B7 are configured as inputs

Andrew H. Fagg: Embedded
Systems: Atmel Basics

64

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Read the value from the port

Andrew H. Fagg: Embedded
Systems: Atmel Basics

65

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

“Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded
Systems: Atmel Basics

66

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Right shift the result by 6 bits – so the value of B6
and B7 are now in bits 0 and 1 of “outval”

Andrew H. Fagg: Embedded
Systems: Atmel Basics

67

Port-Related Registers

The set of C-accessible register for controlling
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional
control

Andrew H. Fagg: Embedded
Systems: Atmel Basics

68

A Note About the C/Atmel Book
The book uses C syntax that looks like this:
PORTA.0 = 0; // Set bit 0 to 0

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= 0xFE;

or
PORTA &= ~1;

or
PORTA = PORTA & ~1;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

69

Putting It All Together

• Program development:
– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and

other tools) to generate code on your laptop
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will

be able to program the chip without removing
it from your circuit

Andrew H. Fagg: Embedded
Systems: Atmel Basics

70

Physical Interface for Programming

AVR ISP

Andrew H. Fagg: Embedded
Systems: Atmel Basics

71

Physical Interface for Programming

AVR ISP

USB
connection to
your laptop

Andrew H. Fagg: Embedded
Systems: Atmel Basics

72

Physical Interface for Programming
AVR ISP

Header connection
will connect to
your circuit
(through an
adapter)

Be careful when
you plug your
circuit in (check
before powering)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

73

AVR ISPs are Cranky
• When things are plugged in and powered,

you should see two green LEDs on the
ISP (on most units)

• One red: usually means that your circuit is
not powered

• Orange: the programmer is confused
– Could be due to your circuit not being

powered at 5V
– Could be due to other problems
– Check power and reboot the ISP

Andrew H. Fagg: Embedded
Systems: Atmel Basics

74

A More Complicated Circuit

(for projects 2-5)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

75

A More Complicated Circuit
• Connect

through
adapter to
AVR ISP

• Do not
reverse the
pins!

Andrew H. Fagg: Embedded
Systems: Atmel Basics

76

A More Complicated Circuit

Extra LED
allows you to
see when a
program is
being
downloaded

Andrew H. Fagg: Embedded
Systems: Atmel Basics

77

A More Complicated Circuit
16 MHz crystal
• Optional!
• Without it,

your
processor will
run at 1MHz
(in general,
we will use
16MHz clock)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

78

Compiling and Downloading Code

• We will work through the details next
Thursday. Before then:
– See the Atmel HowTo (pointer from the

schedule page)
– Windoze: Install AVR Studio and WinAVR
– OS X: Install OSX-AVR
– Linux: Install binutils, avr-gcc, avr-libc, and

avrdude
• This works well now

Andrew H. Fagg: Embedded
Systems: Atmel Basics

79

Compiling and Downloading Code

• Once the chip is programmed, the AVR
ISP will automatically reset the processor;
starting your program

Andrew H. Fagg: Embedded
Systems: Atmel Basics

80

Hints

• Use LEDs to show status information (e.g.,
to indicate what part of your code is being
executed)

• Have one LED blink in some unique way
at the beginning of your program

• Go slow:
– Implement and test incrementally
– Insert plenty of pauses into your code (e.g.,

with delay_ms())

