Last Time

e Resistors
e Diodes
e Transistors

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Today

e A bit more on transistors
« Atmel microcontroller basics

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Atmel Mega8 Basics

 Complete, stand-
alone computer

e Qursis a 28-pin
package

* Most pins:

— Are used for
Input/output

— How they are used

IS configurable

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [ 6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6 ]9 20 b Avece
(XTAL2/TOSC2) PB7 [ 10 19 |1 PB5 (SCK)
(T1) PD5 ] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [] 13 16 [0 PB2 (SS/0OC1B)
(ICP1) PBO [] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Key Features

Up to 16 MIPS (single cycle for most instructions)
~23 digital pins: configurable as inputs or outputs
6 channel, 10-bit analog-to-digital converter
Serial communication support: RS232, SPI, 12C
3 counter/timers (2 8-bit; 1 16-bit)
Internal/external interrupt support

Brown-out detection

Internal oscillator (1 MHz)

Bootloader support

Sleep mode

Watchdog timer angew H. Fagg: Embedde 4

Systems: Atmel Basics



Interrupt Sources

External pins: state change; falling/rising
edge

Timer/counters: when counter overflows
Communication peripherals

Brown out

Analog to digital conversion complete

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Atmel Mega8 Basics

_ PDIP
Power (we will use -
(RESET) PC6 [ 1 28 [1PC5 (ADC5/SCL)
+5V) (RXD) PDO ]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 3 26 [1PC3 (ADC3)
(INTO) PD2 ] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
KIT 6 23 [1 PCO (ADCO)
< VCC L > 22 [ 1GND
8 21 [ 1 AREF
(XTAL1/TOSC1) PB6 ]9 20 J AVCC
(XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK)
(T1) PD5 ] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 ] 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO ] 14 15 [0 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6 ] 1 28 |1 PC5 (ADC5/SCL)
(RXD)PD0OO2 27 |1 PC4 (ADC4/SDA)
(TXD) PD1[]3 26 |1 PC3 (ADC3)
INTO) PD2 ] 4 25 |1 PC2 (ADC2)
5 24 11 PC1 (ADC1)
CK/TO) PDA L 6~ ? (ADCO)
22 [ 1GND
(GND C 8) 2 EF
(XTAL1/TOSC1) P 9 20 J AVCC
(XTAL2/TOSC2) PB7 [ 10 19 [0 PB5 (SCK)
(T1) PD5 [ 11 18 [1 PB4 (MISO)
(AINO) PD6 [ 12 17 @ PB3 (MOSI/OC2)
(AIN1) PD7 Q13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 [0 PB1 (OC1A)
Andrew H. Fagg: Embedded 7

Systems: Atmel Basics



Atmel Mega8 Basics

PDIP
Reset _ =
_ CRESET) PCo ] 1 28 [1 PC5 (ADC5/SCL)
e Bring low to reset = “mereeer 27 [1PC4 (ADCA/SDA)
(TXD) PD1 ] 3 26 [1 PC3 (ADC3)
the processor (INT0) PD2 ] 4 25 [1PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADCH1)
° I (XCK/TO) PD4 ] 6 23 [0 PCO (ADCO)
In general, we wil poage  2pRoo
tie this pin to high anpe 21 [LAREE
(XTAL1/TOSC1) PB6 ] 9 20 [ Avee
through a pu”_up (XTAL2/TOSC2) PB7 [ 10 19 [0 PB5 (SCK)
. (T1) PD5 [ 11 18 [d PB4 (MISO)
resistor (1OK Ohm) (AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 []13 16 |1 PB2 (SS/0C1B)
(ICP1) PBO ] 14 151 PB1 (OC1A)
Andrew H. Fagg: Embedded 8

Systems: Atmel Basics



Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [ 6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND []8 21 [0 AREF
(XTAL1/TOSC1) PB6 J 20 )4
(XTAL2/TOSC2) PB7 ED Y[ PB5 (SCK)
5] 11 8 [0 PB4 (MISO)
(AINO) PD6 [] 12

(AIN1)
(ICP() PBO [

—rt Y
(98]

1 PB2 (SS/0C1B)

(
(

] PB3 (MOSI/OC2)
(SS.

(] PB1 (

OC1A

Andrew H. Fagg: Embedded
Systems: Atmel Basics



Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD
(INTO
(INT1

(XCK/TO

PD1 [
PD2
PD3 [
PD4 [
Veloln
GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7 [
(T1) PD5
(AINO) PD6 [
)

)

T T e

(AIN1) PD7 [
(ICP1) PBO [

S

19 1PB5
18 |1 PB4
17 1 PB3
16 |1 PB2
15 |1 PB1

SCK)
MISO)
MOSI/OC2)
(SS/OC1B)
OC1A)

—‘—\a—-a—-ha—-na—-n

Andrew H. Fagg: Embedded
Systems: Atmel Basics

10



Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP
T
(RE 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3 [ 24 1 PC1 (ADCH)
K/TO) PD4 23 [0 PCO (ADCO)
7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6 ]9 20 b Avece
(XTAL2/TOSC 10 19 |1 PB5 (SCK)
(T1) PD5 ] 1 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
AIN1) PD7 ] 1 16 [0 PB2 (SS/0OC1B)
(ICPT) PBO ] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

11



A First
Circult

28 27 26 25 24 23 22
ENESEEEEEEENE

21 20 19 18 17 16 15
INENEEEEENEEEEE

PC5 PC3 PCl
PC4 PC2 PCO

) Atme

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2

VCC PB6 PD5S PD7

AREF PB5 PB3 PBI

1 Mega8

GND PB7 PD6 PBO

NN EREREEEN
2 3 4 5 6 7

Juguuuuuu

I 8 10 11 12 13 14
| Vi
! MM—
+5V 200 ohm
S

Andrew H. Fagg: Embedded
Systems: Atmel Basics

12



Common Special-Purpose
Registers

Program counter
Status register
Instruction register
Stack pointer

Peripheral control is all done through
registers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

13



Atmel Mega8

8-bit data bu

 Primary
mechanism
for data
exchange

Data Bus 8-bit

Program Status
Flash - Ea
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General
Register Purpose SP
Registrers Unit
3
Instruction Watchdog
Decoder - Timer
(=] =
= ‘B
W w
l 8 £ Analog
Control Lines = pe. Comparator
= 3
[ o
@ =
= =
= = i/O Module1
i'O Module 2
i'O Module n
EEPROM
I/O Lines
14

Andrew H. Fagg: Embedded

Systems: Atmel Basics




Atmel Mega8
«

32 general
purpose
registers

e 8 bits wide

e 3 pairs of
registers can
be combined
to give us 16
bit registers

Data Bus 8-bit

:

Program

Flash ¥ Baihtar

Program

Memory

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose
Registrers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

15




Atmel Mega8
«

Special
purpose
registers

Program
Counter

Instruction
Register

Data Bus 8-bit

Status
and Control

Instruction
Decoder

e Control of the
Internals of
the
processor

Andrew H. Fagg: Embedded

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

16




Atmel Mega8
«

Random Access
Memory (RAM)

1 KByte In size

e Stack Is stored
here

Data Bus 8-bit

:

Flash ¥

Program
Counter

Program

Status
and Control

Memory =

:

Instruction
Register

Control Lines

Andrew H. Fagg: Embedded

Systems: Atmel Basics

Indirect Addressing

32x8
General
Purpose
Registrers

Interrupt
Unit

SPI
Unit

hvd

ALU

1/O Lines i

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

17




Atmel Mega8
«

Flash (EEPROM

 Program
storage

8 KByte In size
e 16 bit words

Data Bus 8-bit

:

Flash
Program
Memory

Program
Counter

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded

Systems: Atmel Basics

Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
» /O Module n
EEPROM ol
I/O Lines g —i
18




Atmel Mega8
«

EEPROM

e Permanent
data storage

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

:

Instruction
Register

3

Instruction
Decoder

Andrew H. Fagg: Embedded

Direct Addressing

Systems: Atmel Basics

Indirect Addressing

Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
e
» /O Module n
I/O Lines g —i
19




Atmel Mega8
«

Arithmetic
Logical Unit

e Data Inputs
from registers

e Control inputs
not shown
(derived from
Instruction
decoder)

Data Bus 8-bit

Program
Counter

Memory =

and Control

Status

Instruction
Decoder

l

Control Lines

Direct Addressin

Indirect Addressi

Andrew H. Fagg: Embedded
Systems: Atmel Basics

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

/O Module 2

Y

i/O Module n

20




Processors in the Atmel Family

 Memory/program size
e Different numbers and types of I/O pins

e Custom support for other communication
protocols (e.g., CANbus)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

21



Instruction Fetch/Execution Cycle

T1 T2 T3 T4

ok —4 N/ \_J _ /)

CPU
1st Instruction Fetch —<

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

N \

___._____;<_;;__ ___

From Atmel Mega8 spec

« While one instruction is being executed, the next is
already being fetched from memory

* In many cases: each step happens on a single clock
cycle

Andrew H. Fagg: Embedded 22
Systems: Atmel Basics



Instruction Execution Cycle

T1 T2 T3 T4
|
[
[
|

AP A N A N A N A N

CPU

| | |
| 1 |
| | |
| 1 1
| | | |
Total Execution Time ——X > : :
| | 1 |
Register Operands Fetch : : : :
| | | |
ALU Operation Execute 4 e : :
| | | |
_ | — I |
Result Write Back . .
I \_:‘/ 1 I
| 1 |

Address the registers and walit for the values
to become avallable

Andrew H. Fagg: Embedded 23
Systems: Atmel Basics



Instruction Execution Cycle

T1 T2 T3 T4

clkcpy ,
Total Execution Time ——K

|
Register Operands Fetch — >

|
ALU Operation Execute : O
|
i |
Result Write Back i < )
u | | /—"\,

Perform the operation dictated by the
Instruction

Andrew H. Fagg: Embedded 24
Systems: Atmel Basics



Instruction Execution Cycle

T1 T2 T3 T4

clkcpy
Total Execution Time ——X

N
4

Register Operands Fetch — >

ALU Operation Execute

|
|
|
|
|
T
|
|
|
|
N~/ !
|

Result Write Back 4 >

7 T
Result stored in destination register
Status register state changed

Andrew H. Fagg: Embedded 25
Systems: Atmel Basics



/O Pin Implementation

Single bit of
PORT B

Pxn

A

Bll|

PUD

(==

l & o Dl

DDxn

T, 4
| _|— WDx

RESET
1.'
3 N
L’f'
& . rd! > PN o D
\l PORTxn ‘
UU.H <
| _|— WPx
RESET
» SLEEP r RRx
V
SYNCHRONIZER
s i e Gl RPx
I D o D Q _I_V
I PINxn I
I |—L ks > T
I_ —— I_ _: clk o
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,o: IO CLOCK RRx: READ PORTx REGISTER
: RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

The physical
pIN

A

PUD

Bll|

(==

l & o Dl

DDxn

T, 4
| _|— WDx

RESET

JA

SLEEP

Y
T

PUD: PULLUP DISABLE
SLEEP: SLEEP CONTROL
clk,q: IO CLOCK

I D @
I |— L T [> [+] I
I_ —— _: clk o
WDx: WRITE DDRx
RDx: READ DDRx
WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

PUD

DDRB —< (=

e Defines
whether

AA A
LA A J

thisisan _ |

/X
L .
.
o
X

input or an L
output e

DATA BUS

Y
[

) clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

PORTB Bll| (= l

 Defines the
value that
IS written _
out to the
pin (If It IS :
an output)

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

Tristate buffer —< (= l

 When this
pin is an
output pin, It

allows the [ , :
PORTB flip- gl T
flop to drive , —

DATA BUS

the pin Z ______
i TR
!

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



Input tri-state

buffer

/O Pin Implementation

Pxn

A

< (= l e

DATA BUS

SYNCHRONI

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



Bit Manipulation

PORTB Is a register

« Controls the value that is output by the set
of port B pins

e But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded 32
Systems: Atmel Basics



Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded
Systems: Atmel Basics

33



Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

34



Bit-Wise Operators

01011110 A
10011011 B
? C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

35



Bit-Wise Operators

o

0101111 A
1001101\%/ B
C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

36



Bit-Wise Operators

0101111® A
1001101\1/ B

v

0 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

37



Bit-Wise Operators

010111ﬁb A

100110

il B

y
f

0 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

38



Bit-Wise Operators

01011110 A
10011011 B
00011010 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

39



Bit-Wise Operators

Other Operators:
e OR: |
e XOR: A

Andrew H. Fagg: Embedded
Systems: Atmel Basics

40



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Andrew H. Fagg: Embedded
Systems: Atmel Basics

41



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A 4:

Andrew H. Fagg: Embedded
Systems: Atmel Basics

42



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 07

Andrew H. Fagg: Embedded
Systems: Atmel Basics

43



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A = A & OxXFB;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

44



A First
Program

Flash the
LEDs at a
regular
Interval

e How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PCh PCH BCL GND

PC4 PC2

PDO  PD2
PC6 PD1 PD3

VCC

PCO AREF PB5
) Atmel Mega8

PD4 GND PB7

AVCC PB4 PB2
PB3 PBI

PD6 PBO
PB6 PD5 PD7

1 4 5 o6 7

LJJ)_ISUI_IUI_ILJL

LD L L L
9 10 1T 12 13 14

200 ohm

Andrew Jr

~ o~

Systems: Atmel Basics



A First
Program

How do we
flash the LED
at a regular
Interval?

* We toggle the
state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 77 8 9 10 11 12 13 14
LT
YW * ¥
* W
+5V 200 ohm
Andrew o

~ o~

Systems: Atmel Basics




/O Pin Implementation

Single bit of
PORT B

Pxn

A

<< (=
l DDRx
& a D <
DDxn
Gl;l.fl <
| _|_ WDx
RESET
1.
3 L
L~
PORTX
= 1 o D
¢ \l ¢ 1 PORTxn
UU.H <
| _|— WPx
RESET
2 SLEEP r RRx
V’
SYNCHRONIZER
—_—_— RPx
I D« 0 Q _I_V
I PINxn I
I |— L T [> [+] I PINX
I_ ————— _: clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRx: READ PORTx REGISTER

RPx:

READ PORTx PIN

DATA BUS



A First Program

main() {
DDRB = 0x3; // Set all port B pins as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec
+

Andrew H. Fagg: Embedded
Systems: Atmel Basics

51



A Second Program

main() {
DDRB = OxFF; // Set all port B pins as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec

PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);
PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);

What does this program do?

Andrew H. Fagg: Embedded 52
Systems: Atmel Basics



A Second Program

main() {

DDRB = OxFF; // Set all port B pins as outputs

while(l) {

PORTB = PORTB ™ 0Ox1;

delay ms(500);

PORTB = PORTB ™ 0x2;

delay ms(250);

PORTB = PORTB ™ Ox2;

delay ms(250);

// XOR bit O with 1
// Pause for 500 msec
// XOR bit 1 with 1

// XOR bit 1 with 1

Flashes LED on PB1 at 1 Hz
on PBO: 0.5 Hz

Andrew H. Fagg: Embedded 53
Systems: Atmel Basics



More Bit Masking

e Suppose we have a 3-bit number (so
values 0 ... 7)

e Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

 How do we express this in code?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

54



Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = command_to robot;
PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os

| ((val & 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5

Andrew H. Fagg: Embedded 55
Systems: Atmel Basics



Bit Masking

mainQ—¢
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short is 8-bits wide

val = command to robot;

PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os
| ((val \& 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5)

}
B3-B7 are outputs; all others are still inputs (could

be different depending on how other pins are used)

Andrew H. Fagg: Embedded 56
Systems: Atmel Basics



Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = foobar;

PORTB =((PORTB & 0OxC7) // Set the current B3-B5 to Os
| ((va <3); // OR with new values (shifted
// to fit within B3-B5

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Andrew H. Fagg: Embedded 57
Systems: Atmel Basics



Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = foobar;

PORTB = // Set the current B3-B5 to Os
((val & 0x7))<<3); // OR with new values (shifted

/ // to fit within B3-B5

Substitute an arbitrary value into these
bits

Andrew H. Fagg: Embedded 58
Systems: Atmel Basics



Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = foobar;

PORTB =/J(PORTB & 0OxC7) // Set the current B3-B5 to Os

val & 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5

And use the result to change the output
state of port B

Andrew H. Fagg: Embedded 59
Systems: Atmel Basics

}



Reading the Digital State of Pins

Given: we want to read the state of PB6 and

OW C
OW C

OW C

PB7 and obtain avalue of 0 ... 3

0 we configure the port?
0 we read the pins?
o0 we translate their values into an

integer of 0 .. 37

Andrew H. Fagg: Embedded 60
Systems: Atmel Basics



Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide
val = PINB;

outval = (val & 0xC0O) >> 6;
+

Andrew H. Fagg: Embedded 61
Systems: Atmel Basics



/O Pin Implementation

Single bit of
PORT B

Pxn

A

<< (=
l DDRx
& a D <
DDxn
Gl;l.fl <
| _|_ WDx
RESET
1.
3 L
L~
PORTX
= 1 o D
¢ \l ¢ 1 PORTxn
UU.H <
| _|— WPx
RESET
2 SLEEP r RRx
V’
SYNCHRONIZER
—_—_— RPx
I D« 0 Q _I_V
I PINxn I
I |— L T [> [+] I PINX
I_ ————— _: clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRx: READ PORTx REGISTER

RPx:

READ PORTx PIN

DATA BUS



Reading the Digital State of Pins

mainQ—¢

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned shport val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & 0xC0O) >> 6;
+

B6 and B7 are configured as inputs

Andrew H. Fagg: Embedded 63
Systems: Atmel Basics



Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

@ = PINB;

outval = I & OxCO) >> 6;

}
Read the value from the port

Andrew H. Fagg: Embedded 64
Systems: Atmel Basics



Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval =((val & 0xC0)J)>> 6;
ks

“*Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded 65
Systems: Atmel Basics



Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & OxC
¥

Right shift the result by 6 bits — so the value of B6
and B7 are now Iin bits 0 and 1 of “outval”

Andrew H. Fagg: Embedded 66
Systems: Atmel Basics



Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional |  Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

Andrew H. Fagg: Embedded
Systems: Atmel Basics




A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O = O; // Set bit O to O

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OXFE;

or

PORTA &= ~1;

or

PORTA = PORTA & ~1;

Andrew H. Fagg: Embedded 68
Systems: Atmel Basics



Putting It All Together

 Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

 Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
It from your circuit

Andrew H. Fagg: Embedded
Systems: Atmel Basics

69



Physical Interface for Programming

AVR ISP

Andrew H. Fagg: Embedded 70
Systems: Atmel Basics



Physical Interface for Programming

AVR ISP

USB
connection to
your laptop

Andrew H. Fagg: Embedded 71
Systems: Atmel Basics



Physical Interface for Programming
AVR ISP

Header connection
will connect to | l_"‘
your circuit ug <
(through an .,
adapter) 2 ;

Be careful when
you plug your
circuit in (check
before powering)

Andrew H. Fagg: Embedded 72
Systems: Atmel Basics




AVR ISPs are Cranky

* When things are plugged in and powered,
you should see two green LEDs on the
ISP (on most units)

* One red: usually means that your circult IS
not powered

 Orange: the programmer is confused

— Could be due to your circuit not being
powered at 5V

— Could be due to other problems
— Check power and reboot the ISP

Andrew H. Fagg: Embedded 73
Systems: Atmel Basics



A More Complicated Circuit

(for projects 2-5) |+

AVR ISP
Connector

=

C

200 ohm

200 ohm

/

28 27 26 25 24 23 22 21 20 19

1§ 17

L1

16 13

I I TI T I rIrir

T[T T]

)

PC6 PDI

PC4 PC2

PD0O  PD2

PC5 PC3 PCl GND AVCC
PCO AREF PBS

Atmel Mega8

PD4 GND PB7
PD3 VCC PB6

PB4

PD5

PB3 PBI

PD6 PB0

PB2

PD7

1

HjEREREREEE
2345 6 7

|
9 1

o

YWWA
10K ohm

+5V

Andrew H. Fagg: Embedded
Systems: Atmel Basics

L L LT L

11 12 13 14

16MHz

15pF

L TT e

LO
\Vigt

200 ohm

74



A More Complicated Circuit

e Connect
through
adapter to
AVR ISP

e DO not
reverse the
pins!

AVR IBP
Connedtor

Andrew H. Fagg: Embedded
Systems: Atmel Basics

LC 200 ohm
NW— MWV
200 ohm é
FZ7
JANON
L1
28 27 26 25 24 23 22 21 20 19 1§ 17 16 15
AN EEEEEEEEEEEENE NN EEEE
PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HJERERERENEEN LT L
12 3 4 5 6 7/ 8 9109 11 12 13 14
\Varad
— W I5pF
l 10K ohm .M
y, N 200 ohm
a7
75



A More Complicated Circuit

Extra LED
allows you to
see when a

1
ENEEEEEEE NN NN RE NN

AN
LC \ 200 ohm
MW—E> MW
200 ohm é
EFT

/ JANCN
L1

28 27 26 25 24 23 22 21 20 19 1§ 17 16 13

" PC5 PC3 PCl GND AVCC PB4 PB2
prOgram IS PC4 PC2 PCO AREF PB5 PB3 PBI
tme ega
being ) Atmel Mega8
PDO0 PD2 PD4 GND PB7 PD6 PBO
downloaded PC6 PDI PD3 VCC PB6 PD5 PD7
HJEREREREREER L LU L
1 2 3 4 5 6 70 8] 9] 14 11 12 13 14
16MHz Lo
| 7
AVR ISP : - WWA 2
Connector 10K ohm ‘M
+5V 200 ohm
Y avavd
Andrew H. Fagg: Embedded 76

Systems: Atmel Basics



A More Complicated Circuit

16 MHz crystal

e Optional!

o Without It,
your
processor will
run at 1IMHz
(in general,
we will use
16MHz clock)

AVR ISP
Connector

PC5 PC3
PC4 PC2
NN >
\ PDO PD2 PD4 GND PB7 PD6 PBO

PD3 VCC PB6 PD5 PD7

PD1

PCO AREF PB5 PB3 PBI

Atmel Mega8

LC 200 ohm
MMN— MW
200 ohm é
7 I
L1
28 27 26 25 24 23 22 21 20 19 1§ 17 16 15
EEEEEEEEEEEEEEEENEEEEERENEE
PC1 GND AVCC PB4 PB2

P
ITH
, e

L L
6 7

10K ohm

Andrew H. Fagg: Embedded
Systems: Atmel Basics

LI LT L
12713 14

LO
J-17

ohm

77



Compiling and Downloading Code

* We will work through the detalls next
Thursday. Before then:

— See the Atmel HowTo (pointer from the
schedule page)

— Windoze: Install AVR Studio and WINAVR
— 0OS X: Install OSX-AVR

— Linux: Install binutils, avr-gcc, avr-libc, and
avrdude

e This works well now

Andrew H. Fagg: Embedded
Systems: Atmel Basics

78



Compiling and Downloading Code

e Once the chip is programmed, the AVR
ISP will automatically reset the processor;
starting your program

Andrew H. Fagg: Embedded
Systems: Atmel Basics

79



Hints

 Use LEDs to show status information (e.g.,
to indicate what part of your code Is being
executed)

 Have one LED blink in some unique way
at the beginning of your program

e Go slow:
— Implement and test incrementally

— Insert plenty of pauses into your code (e.g.,
with delay _ms())

Andrew H. Fagg: Embedded 80
Systems: Atmel Basics



