
Andrew H. Fagg: Embedded
Systems: I2C Communication

5

A2D converter note

• Resistors…

Andrew H. Fagg: Embedded
Systems: I2C Communication

6

RS232
(Asynchronous Serial Protocol)

• Point-to-point wiring & protocol
– Allows for bidirectional transmission (need two

wires for this)
• No shared clock

– Must have agreed on a transmission frequency
ahead of time

– Clocks are synchronized with a start bit
– Transmission from A to B does not have to be

synchronized with the transmission from B to A

Andrew H. Fagg: Embedded
Systems: I2C Communication

7

Synchronous Serial Protocols

• A clock signal is shared
– No longer have to assume that two clocks

stay in phase
– Allows us to run the clock much faster than

with asynchronous protocols
• Master/slave structure (for our purposes)

– Master is responsible for producing the clock
and any other control signals

– Potential for many devices to share a
common bus

Andrew H. Fagg: Embedded
Systems: I2C Communication

8

Serial Communication with I2C
(Inter-Integrated Circuit)

• Potentially many masters
• Unidirectional communication: only one

device may write to the bus at any one
time

• Only two signal lines:
– SDA: data transmission
– SCL: clock

– Some refer to this as a Two Wire Interface

Andrew H. Fagg: Embedded
Systems: I2C Communication

9

I2C Device Interconnection

• Any device can be a master or a slave
• Devices drive lines low, but rely on the

pull-up resistors to bring the lines high

Andrew H. Fagg: Embedded
Systems: I2C Communication

10

I2C Device Interconnection

Pull-up resistors
• Devices only drive the SCL/SDA lines low
• Otherwise, they allow the lines to float

– So they are pulled up to high by the resistors
• This prevents a line from being driven high

by one device and low by another device
(which would create a short)

Andrew H. Fagg: Embedded
Systems: I2C Communication

11

I2C

What is missing?

Andrew H. Fagg: Embedded
Systems: I2C Communication

12

I2C

What is missing?
• We need some way to address the

individual devices
• We need to deal with the bus arbitration

problem
– When two or more devices try to drive the bus

at the same time…

Andrew H. Fagg: Embedded
Systems: I2C Communication

13

I2C “Atoms”
3 conditions: start, data, and stop
• These atomic components make up

larger packets

Andrew H. Fagg: Embedded
Systems: I2C Communication

14

I2C “Atoms”
Start condition: SCL drop follows SDA drop

Once a master produces this sequence, it
assumes that it “owns” the bus

Andrew H. Fagg: Embedded
Systems: I2C Communication

15

I2C “Atoms”
Data phase

• Data must be valid while the clock is high
• Bit is sampled on the rising edge of the

clock

Andrew H. Fagg: Embedded
Systems: I2C Communication

16

I2C “Atoms”
Data

• Master generates clock
• Sender (master or slave) generates data
• Receiver generates ACK bit (a low

typically)

Andrew H. Fagg: Embedded
Systems: I2C Communication

17

I2C “Atoms”

Stop Condition

• Order in which the pins return to high is
important

• Master relinquishes control of the bus

Andrew H. Fagg: Embedded
Systems: I2C Communication

18

Packets

Packets involve a multi-byte transfer
between devices

• Start/stop
• Address
• Data

Andrew H. Fagg: Embedded
Systems: I2C Communication

19

Addressing Devices

The first byte of any packet includes a device
address.

• In the simple case, 7-bit addresses are
used
– These are the upper 7 bits of the byte

• The least significant bit indicates a read (1)
or a write(0) to the addressed device

• The slave must ACK the address

Andrew H. Fagg: Embedded
Systems: I2C Communication

20

Sending N Bytes from Master to
Slave

How do we do it?

Andrew H. Fagg: Embedded
Systems: I2C Communication

21

A Full Write Packet
The write packet includes the following:
• Start condition
• Address byte (with LSB=0)
• Data byte 1 (followed by an ACK=0 from

the slave)
• Data byte 2 (followed by an ACK=0)

:
• Data byte N (followed by an ACK=0)
• Stop condition

Andrew H. Fagg: Embedded
Systems: I2C Communication

22

A Full Write Packet

• If at any point, the slave does not ACK a
byte, this is considered an error and
should be handled by the master

Andrew H. Fagg: Embedded
Systems: I2C Communication

23

Slave Transmission to the
Master

• Must be in response to a master request
• Master still generates the clock signal

Andrew H. Fagg: Embedded
Systems: I2C Communication

24

Slave Transmission to the
Master

If the slave is capable of multi-byte
transfer, the master can control whether
a next byte will be sent:

• If the master acknowledges the byte,
then the device will send the next byte

• If the master leaves acknowledge bit
high, then the device will not try to send
another byte

Andrew H. Fagg: Embedded
Systems: I2C Communication

27

Sending N Bytes from Slave to
Master

What does the transaction look like?

Andrew H. Fagg: Embedded
Systems: I2C Communication

28

A Full Read Packet
The read transaction includes the following:
• Start condition (driven by the master)
• Address byte (by master; with LSB=1)
• Data byte 1 (driven by the slave, but clock is driven

by the master; ACK = 0 from the master)
• Data byte 2 (ACK = 0)

:
• Data byte N (ACK = 1)
• Stop condition (by master)

Andrew H. Fagg: Embedded
Systems: I2C Communication

29

Mixed Transactions

Some transactions will require both a write
and a read

• For example: reading from an EEPROM
device:
– Master must send the command and

addressing information
– Then the master begins the read phase

Andrew H. Fagg: Embedded
Systems: I2C Communication

30

Mixed Transactions

• In this case, the master will first generate
a write packet and then a read packet

• But: there will not be an intermediate
stop condition, instead a restart condition
separates the two halves of the
transaction

• This ensures that the master maintains
control of the bus through the entire
transaction

Andrew H. Fagg: Embedded
Systems: I2C Communication

31

Mixed Transactions

What would this transaction look like?

Andrew H. Fagg: Embedded
Systems: I2C Communication

32

Mixed Transactions
• Start condition
• Address byte (with LSB=0)
• Data byte 1 (followed by an ACK=0 from the slave)
• Data byte 2 (followed by an ACK=0)

:
• Data byte N
• Restart condition
• Address byte (with LSB=1)
• Data byte 1 driven by slave (followed by an ACK=0 from

the master)
• Data byte 2 (followed by an ACK=0)

:
• Data byte M (followed by an ACK=1)
• Stop condition

Andrew H. Fagg: Embedded
Systems: I2C Communication

33

Problem with Multiple Masters

• A master is not allowed to initiate a
transaction if one is already in progress
– We know this is the case if either SCK or SDL

are low
• But – multiple masters may try to initiate at

approximately the same time
– How do we detect this?

Andrew H. Fagg: Embedded
Systems: I2C Communication

34

Masters Colliding on the Bus

• When a master stops driving the line low, it
can read the line state

• If the line does not return high, then we
have a collision

• The master must abort its transaction and
initiate at a later time

• The other master can continue its
transaction without error

Andrew H. Fagg: Embedded
Systems: I2C Communication

35

I2C with 10-Bit Addresses

• More modern slave devices use 10-bit
addressing

• This requires 2 bytes:
– 11110XXD XXXXXXXX

• Note that DEH is incorrect on this detail
– X = address bit
– D = direction (R/W)

Andrew H. Fagg: Embedded
Systems: I2C Communication

37

I2C on the Mega8s

Support in hardware
• Software interacts at the level of start/stop

conditions and single byte data/address
transfers

• Can be configured as a master or a slave
• Slave: address is configurable
• Master: clock rate is configurable

Andrew H. Fagg: Embedded
Systems: I2C Communication

38

• (details optional)

Andrew H. Fagg: Embedded
Systems: I2C Communication

39

Mega8 “TWI” Hardware

Andrew H. Fagg: Embedded
Systems: I2C Communication

40

Software Interaction with the TWI
Hardware: Initiation

For each condition and data byte:
1. Configure the hardware by setting the

appropriate register states
– This includes committing to whether an ACK

will be generated (by the receiver)
2. Enable the hardware for the transaction

– Set the TWINT bit of TWCR

Andrew H. Fagg: Embedded
Systems: I2C Communication

41

Software Interaction with the TWI
Hardware: After the Transaction

1. TWINT bit of TWCR will go from low to
high

– Note that some bits of TWCR have multiple
functions. So: read and write operations do
not access the same registers

2. Can generate an interrupt on this event

Andrew H. Fagg: Embedded
Systems: I2C Communication

42

OUlib Support

Provides (for the most part) a level of
abstraction beyond the bit flipping

• Some functions will initiate a transaction
automatically (this is documented in the
code)

Andrew H. Fagg: Embedded
Systems: I2C Communication

43

Protocol Example
Slave transmission of data to master:
• Byte 1: data byte 1
• Byte 2: data byte 2

:
• Byte N: data byte N

Note: in this case, the master knows the
number of bytes that will be coming from
the slave

Andrew H. Fagg: Embedded
Systems: I2C Communication

49

(most) Possible Status Codes for
Master Receiver Case

Status codes in response to an interrupt (TWSR register)

From twi.h:
• TW_START: a start has been successfully executed on the bus.
• TW_REP_START: a restart (repeated start) has been executed
• TW_MR_ARB_LOST: this master has not been successful at

claiming the bus
• TW_MR_SLA_ACK: a slave device has acknowledged being

addressed
• TW_MR_SLA_NACK: a slave device has not acknowledged the

address
• TW_MR_DATA_ACK: a slave device has transmitted data to the

master and the master has acknowledged
• TW_MR_DATA_NACK: a slave device has transmitted data to the

master and the master has not acknowledged
• TW_BUS_ERROR: an error has occurred

Andrew H. Fagg: Embedded
Systems: I2C Communication

50

TWI Events: Master as Receiver

Andrew H. Fagg: Embedded
Systems: I2C Communication

51

Notes

• Macros for TWI events are defined by avr-
LIBC

• The TWI events will only partially
determine your FSM events
– E.g., a byte counter

• Similar event lists for other modes:
– Master as transmitter
– Slave as transmitter
– Slave as receiver

Andrew H. Fagg: Embedded
Systems: I2C Communication

52

Master Receiver

What is the FSM?
• States?
• Events?
• Actions?

Andrew H. Fagg: Embedded
Systems: I2C Communication

53

Master Receiver

• States: tell us where we are in the protocol
• Events:

– TWI status
– other variables (we will need a counter)

• Actions:
– I2C atomic operations (start, stop, data,

restart)
– Manipulate internal variables

Andrew H. Fagg: Embedded
Systems: I2C Communication

54

Master Receiver

What does the FSM look like?

Andrew H. Fagg: Embedded
Systems: I2C Communication

55

(most) Possible Status Codes for
Master Transmitter Case

Status codes in response to an interrupt (TWSR register)

From twi.h:
• TW_START
• TW_REP_START
• TW_MR_ARB_LOST
• TW_MR_SLA_ACK: a slave has acknowledged being

addressed
• TW_MR_SLA_NACK: no slave has acknowledged
• TW_MR_DATA_ACK: data transmitted to slave has been

acknowledged
• TW_MR_DATA_NACK : data sent, but not acknowledged
• TW_BUS_ERROR: an error has occurred

Andrew H. Fagg: Embedded
Systems: I2C Communication

56

TWI Events: Master as Transmitter

Andrew H. Fagg: Embedded
Systems: I2C Communication

59

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Andrew H. Fagg: Embedded
Systems: I2C Communication

60

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Andrew H. Fagg: Embedded
Systems: I2C Communication

61

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Andrew H. Fagg: Embedded
Systems: I2C Communication

62

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Andrew H. Fagg: Embedded
Systems: I2C Communication

63

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Initiate START

Andrew H. Fagg: Embedded
Systems: I2C Communication

64

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

START Received: proceed with remaining transaction

Andrew H. Fagg: Embedded
Systems: I2C Communication

65

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

START Received: proceed with remaining transaction

Andrew H. Fagg: Embedded
Systems: I2C Communication

66

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

During transaction

Andrew H. Fagg: Embedded
Systems: I2C Communication

67

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

End Transaction
State is DONE or ERROR

Andrew H. Fagg: Embedded
Systems: I2C Communication

68

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

Main “sees” state transition
To DONE or ERROR

Andrew H. Fagg: Embedded
Systems: I2C Communication

69

ISR/Main Program Communication

master_size
master_slave_size

master_buffer
master_state

master_address
master_status

ISR Main

If DONE, extract buffer contents

Andrew H. Fagg: Embedded
Systems: I2C Communication

70

An ISR Implementation
// FSM state
volatile int8_t master_state;

// Number of bytes that the master will receive
volatile uint8_t master_size;

// Buffer that the data is being dropped into
volatile uint8_t master_buffer[BUFFER_SIZE];

// Address of the slave
volatile uint8_t master_address;

// Current byte count
uint8_t master_counter;

// Copy of the status register (useful for error
processing)

volatile uint8_t master_status;

Andrew H. Fagg: Embedded
Systems: I2C Communication

71

An ISR Implementation
ISR(TWI_vect) {

uint8_t status;
switch(master_state)
{
case I2C_MASTER_STATE_WSTART:

// We were waiting for the start to be asserted
status = twi_get_status();
if(status == TW_START) {

// Send slave address; move on to the next state
master_state = I2C_MASTER_STATE_WADDRESS;
twi_send_byte((master_address & 0xfe) | 0x1);

}else{
// An error has occurred
master_state = I2C_MASTER_STATE_ERROR;
master_status = status;
// We assume that we lost arbitration, so do nothing to
// the hardware

};
break;

Andrew H. Fagg: Embedded
Systems: I2C Communication

72

Waiting for Address
case I2C_MASTER_STATE_WADDRESS:

status = twi_get_status();
if(status == TW_MR_SLA_ACK) {
// The slave device acknowledged
// We will positively acknowledge the next byte
twi_set_ack(TWI_ACKNOWLEDGE_ENABLE);
master_state = I2C_MASTER_STATE_WDATA;
master_counter = 0;
twi_set_twint(); // Force twint flag to be cleared:

// initiate read transaction

}else{
// An error has occurred
master_state = I2C_MASTER_STATE_ERROR;
twi_send_stop();
master_status = status;

};
break;

Andrew H. Fagg: Embedded
Systems: I2C Communication

74

Waiting for Data
case I2C_MASTER_STATE_WDATA:
// We are waiting for <master_size> bytes of data
status = twi_get_status();
if(status == TW_MR_DATA_NACK) {

// We did not ACK the last byte
// (so it was the last one)

master_buffer[master_counter] = twi_get_byte();

// We have received all of the bytes
master_state = I2C_MASTER_STATE_DONE;
twi_send_stop();
master_status = status;

}else if(status == TW_MR_DATA_ACK) {

Andrew H. Fagg: Embedded
Systems: I2C Communication

75

Waiting for Data
case I2C_MASTER_STATE_WDATA:

// We are waiting for <master_size> bytes of data
status = twi_get_status();
if(status == TW_MR_DATA_NACK) {

:
}else if(status == TW_MR_DATA_ACK) {

// This is not the last byte
master_buffer[master_counter] = twi_get_byte();
// Increment byte count
++master_counter;

if(master_counter == master_size-1) {
// This is going to be the last byte to be received
twi_set_ack(TWI_ACKNOWLEDGE_DISABLE);

}else{
// This is not the last byte
twi_set_ack(TWI_ACKNOWLEDGE_ENABLE);

};
twi_set_twint();

}else{
// An error has occurred

Andrew H. Fagg: Embedded
Systems: I2C Communication

76

Subtleties
• We transition to the DONE state as we are

issuing the stop condition
• But: we don’t wait for the stop condition to

be completed
• There is a danger that we will initiate the

next transaction before the previous one is
really complete

Andrew H. Fagg: Embedded
Systems: I2C Communication

77

Subtleties
For some reason, there does not seem to be an

interrupt generated for master receive mode
when the stop condition is completed …

Solution:
• Before the main program is allowed to initiate

the next transmission, it must check that the stop
has occurred:

twi_get_stop() will be true as long as we are still
waiting for the stop to complete (so busy wait on this
condition)

Andrew H. Fagg: Embedded
Systems: I2C Communication

78

Subtleties

A common problem: the interrupt routine
behaves as if it is never being called

• Check 1: is the interrupt being enabled?
• Check 2: do you have pull-up resistors on

the SDA and SCL lines?

Andrew H. Fagg: Embedded
Systems: I2C Communication

79

I2C Protocol for the Major
Component

• Need to handle both transmission to and
reception from the slave

• We will use the mixed protocol as already
described in the above example

• You may assume that the master knows a priori
how many bytes will be transferred (N) and how
many will be received (M)

• But – the master should properly handle the
case where N= 0 or M=0

Andrew H. Fagg: Embedded
Systems: I2C Communication

80

I2C Compass

• Compass exposes a set of registers that
can be read from and written to

• Writing to the compass: standard write I2C
transaction

• Reading from the compass: mixed I2C
transaction:
– Send a register address
– Start reading bytes

Andrew H. Fagg: Embedded
Systems: I2C Communication

81

Debugging

• Use LEDs to indicate the FSM state
– Help you to determine where your FSM gets

hung
• Use Oscilloscopes

– 2 channels possible: use for SDA and SCL
– Learn how to capture and store traces

• Incremental implementation and
debugging

Andrew H. Fagg: Embedded
Systems: I2C Communication

82

On to SPI …

