A2D converter note

e Resistors...

Andrew H. Fagg: Embedded
Systems: [12C Communication

RS232
(Asynchronous Serial Protocol)

e Point-to-point wiring & protocol

— Allows for bidirectional transmission (need two
wires for this)

 No shared clock

— Must have agreed on a transmission frequency
ahead of time

— Clocks are synchronized with a start bit

— Transmission from A to B does not have to be
synchronized with the transmission from B to A

Andrew H. Fagg: Embedded 6
Systems: [12C Communication

Synchronous Serial Protocols

* A clock signal is shared
— No longer have to assume that two clocks
stay in phase
— Allows us to run the clock much faster than
with asynchronous protocols

* Master/slave structure (for our purposes)

— Master Is responsible for producing the clock
and any other control signals

— Potential for many devices to share a
common bus Andrew H. Fagg: Embedded

Systems: [12C Communication

Serial Communication with 12C
(Inter-Integrated Circuit)

e Potentially many masters
e Unidirectional communication: only one
device may write to the bus at any one
time
e Only two signal lines:
— SDA: data transmission
— SCL.: clock

— Some refer to this as a Two Wire Interface

Andrew H. Fagg: Embedded
Systems: [12C Communication

12C Device Interconnection

+5V

21K Q

SCL

SDA

Device 1

Device 2

Device 3

Device 4

* Any device can be a master or a slave

* Devices drive lines low, but rely on the
pull-up resistors to bring the lines high

Andrew H. Fagg: Embedded
Systems: [12C Communication

12C Device Interconnection

Pull-up resistors
* Devices only drive the SCL/SDA lines low

e Otherwise, they allow the lines to float
— So they are pulled up to high by the resistors
e This prevents a line from being driven high

by one device and low by another device
(which would create a short)

Andrew H. Fagg: Embedded 10
Systems: [12C Communication

What is missing?

Andrew H. Fagg: Embedded
Systems: [12C Communication

11

12C

What is missing?

 We need some way to address the
iIndividual devices

 We need to deal with the bus arbitration
problem

— When two or more devices try to drive the bus
at the same time...

Andrew H. Fagg: Embedded 12
Systems: [12C Communication

12C “Atoms”

3 conditions: start, data, and stop

 These atomic components make up
larger packets

Andrew H. Fagg: Embedded
Systems: [12C Communication

13

1°C “Atoms”
Start condition: SCL drop follows SDA drop

SDA \
SCL O

Once a master produces this sequence, it
assumes that it “owns” the bus

Andrew H. Fagg: Embedded 14
Systems: [12C Communication

12C “Atoms”

Data phase
SDA MSB X X X A__LSB)\
SCL SN2 | 8\ /acK\

e Data must be valid while the clock is high

e Bit Is sampled on the rising edge of the
clock

Andrew H. Fagg: Embedded 15
Systems: [12C Communication

12C “Atoms”

Data

SDA MSB X X X X__ LSB)\

SCL 23/ 8\ /ACK__

 Master generates clock
e Sender (master or slave) generates data

 Recelver generates ACK bit (a low
typlCa”y) Andrew H. Fagg: Embedded 16

Systems: [12C Communication

12C “Atoms”

Stop Condition

SDA /
sc.

e Order in which the pins return to high is
iImportant

* Master relinquishes control of the bus

Andrew H. Fagg: Embedded
Systems: [12C Communication

17

Packets

Packets involve a multi-byte transfer
between devices

o Start/stop
e Address
e Data

Andrew H. Fagg: Embedded
Systems: [12C Communication

18

Addressing Devices

The first byte of any packet includes a device
address.

* In the simple case, 7-bit addresses are
used

— These are the upper 7 bits of the byte

* The least significant bit indicates a read (1)
or a write(0) to the addressed device

e The slave must ACK the address

Andrew H. Fagg: Embedded 19
Systems: [12C Communication

Sending N Bytes from Master to
Slave

How do we do 1t?

Andrew H. Fagg: Embedded
Systems: [12C Communication

20

A Full Write Packet

The write packet includes the following:
e Start condition
o Address byte (with LSB=0)

e Data byte 1 (followed by an ACK=0 from
the slave)

e Data byte 2 (followed by an ACK=0)

 Data byte N (followed by an ACK=0)
e Stop condition

Andrew H. Fagg: Embedded 21
Systems: [12C Communication

A Full Write Packet

e If at any point, the slave does not ACK a
byte, this is considered an error and
should be handled by the master

Andrew H. Fagg: Embedded
Systems: [12C Communication

22

Slave Transmission to the
Master

 Must be In response to a master request
 Master still generates the clock signal

Andrew H. Fagg: Embedded
Systems: [12C Communication

23

Slave Transmission to the

Master

If the slave Is capable of multi-byte
transfer, the master can control whether
a next byte will be sent:

* |f the master acknowledges the byte,
then the device will send the next byte

* |f the master leaves acknowledge bit
high, then the device will not try to send
another byte

Andrew H. Fagg: Embedded
Systems: [12C Communication

24

Sending N Bytes from Slave to
Master

What does the transaction look like?

Andrew H. Fagg: Embedded
Systems: [12C Communication

27

A Full Read Packet

The read transaction includes the following:
« Start condition (driven by the master)
o Address byte (by master; with LSB=1)

e Data byte 1 (driven by the slave, but clock is driven
oy the master; ACK = 0 from the master)

e Data byte 2 (ACK =0)

e Data byte N (ACK=1)
e Stop condition (by master)

Andrew H. Fagg: Embedded 28
Systems: [12C Communication

Mixed Transactions

Some transactions will require both a write
and a read

 For example: reading from an EEPROM
device:

— Master must send the command and
addressing information

— Then the master begins the read phase

Andrew H. Fagg: Embedded 29
Systems: [12C Communication

Mixed Transactions

* |In this case, the master will first generate
a write packet and then a read packet

o But: there will not be an intermediate
stop condition, instead a restart condition
separates the two halves of the
transaction

e This ensures that the master maintains
control of the bus through the entire
transaction

Andrew H. Fagg: Embedded 30
Systems: [12C Communication

Mixed Transactions

What would this transaction look like?

Andrew H. Fagg: Embedded
Systems: [12C Communication

31

Mixed Transactions

Start condition

Address byte (with LSB=0)

Data byte 1 (followed by an ACK=0 from the slave)
Data byte 2 (followed by an ACK=0)

Data byte N
Restart condition
Address byte (with LSB=1)

Data byte 1 driven by slave (followed by an ACK=0 from
the master)

Data byte 2 (followed by an ACK=0)

Data byte M (followed by an ACK=1)
Stop condition Andrew H. Fagg: Embedded 32

Systems: [12C Communication

Problem with Multiple Masters

e A master is not allowed to Iinitiate a
transaction if one Is already In progress

— We know this is the case If either SCK or SDL
are low

e But — multiple masters may try to initiate at
approximately the same time

— How do we detect this?

Andrew H. Fagg: Embedded 33
Systems: [12C Communication

Masters Colliding on the Bus

 When a master stops driving the line low, It
can read the line state

* |f the line does not return high, then we
have a collision

e The master must abort its transaction and
Initiate at a later time

e The other master can continue Its
transaction without error

Andrew H. Fagg: Embedded 34
Systems: [12C Communication

12C with 10-Bit Addresses

e More modern slave devices use 10-bit
addressing

e This requires 2 bytes:

—11110XXD XXXXXXXX
 Note that DEH is incorrect on this detall

— X = address bit
— D = direction (R/W)

Andrew H. Fagg: Embedded
Systems: [12C Communication

35

1“C on the Mega8s

Support In hardware

o Software interacts at the level of start/stop

conditions and single byte data/address
transfers

e Can be configured as a master or a slave
o Slave: address Is configurable
 Master: clock rate is configurable

Andrew H. Fagg: Embedded 37
Systems: [12C Communication

 (detalls optional)

Andrew H. Fagg: Embedded
Systems: [12C Communication

38

Mega8 “TWI” Hardware

SCL SDA
Slew-rate Spike Slew-rate Spike
Contral Filter Control Filter
f 1 A
Y Y
Bus Interface Unit Bit Rate Generator
START / STOP
Contral Spike Suppression Prescaler
i} o=
- ' Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
Address Match Unit Control Unit
L,
Address Register Status Register Control Register c
(TWAR) - > (TWSR) I (TWCR) 2
Address Comparator State Machine and
Status control

Software Interaction with the TWI
Hardware: Initiation

For each condition and data byte:
1. Configure the hardware by setting the

appropriate register states

— This includes committing to whether an ACK
will be generated (by the receiver)

2. Enable the hardware for the transaction
— Set the TWINT bit of TWCR

Andrew H. Fagg: Embedded 40
Systems: [12C Communication

Software Interaction with the TWI
Hardware: After the Transaction

1. TWINT bit of TWCR will go from low to
high
— Note that some bits of TWCR have multiple

functions. So: read and write operations do
not access the same registers

2. Can generate an interrupt on this event

Andrew H. Fagg: Embedded
Systems: [12C Communication

41

OUlib Support

Provides (for the most part) a level of
abstraction beyond the bit flipping

o Some functions will initiate a transaction
automatically (this is documented in the
code)

Andrew H. Fagg: Embedded 42
Systems: [12C Communication

Protocol Example
Slave transmission of data to master:
 Byte 1: data byte 1
 Byte 2: data byte 2

 Byte N: data byte N

Note: In this case, the master knows the
number of bytes that will be coming from
the slave

Andrew H. Fagg: Embedded
Systems: [12C Communication

43

(most) Possible Status Codes for
Master Receiver Case

Status codes in response to an interrupt (TWSR register)

From twi.h:

« TW_START: a start has been successfully executed on the bus.

« TW_REP_START: a restart (repeated start) has been executed

« TW_MR_ARB _LOST: this master has not been successful at
claiming the bus

« TW_MR_SLA ACK: a slave device has acknowledged being
addressed

« TW_MR_SLA NACK: a slave device has not acknowledged the
address

« TW_MR_DATA ACK: a slave device has transmitted data to the
master and the master has acknowledged

« TW_MR_DATA _ NACK: a slave device has transmitted data to the
master and the master has not acknowledged

« TW_BUS_ ERROR: an error has occurred

Andrew H. Fagg: Embedded
Systems: [12C Communication

49

TWI Events: Master as Recelver

Table 67. Status codes for Master Receiver Mode

Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- | v 6.0m TWDR
are 0 tace Hardware STA sTO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or NOT | Mo TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit Slave mode will be entered
Mo TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; Mo TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
Mo TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; Mo TWDR action or 1 0 1 X Repeated START will be fransmitted
NOT ACK has been received Mo TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Mo TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO Flag will be reset

Andrew H. Fagg: Embedded
Systems: [12C Communication

50

Notes

 Macros for TWI events are defined by avr-
LIBC

 The TWI events will only partially
determine your FSM events
— E.qg., a byte counter

o Similar event lists for other modes:
— Master as transmitter
— Slave as transmitter
— Slave as receiver

Andrew H. Fagg: Embedded 51
Systems: [12C Communication

Master Recelver

What is the FSM?
o States?
e Events?
e Actions?

Andrew H. Fagg: Embedded
Systems: [12C Communication

52

Master Recelver

o States: tell us where we are in the protocol

 Events:
— TWI status
— other variables (we will need a counter)

e Actions:

— |2C atomic operations (start, stop, data,
restart)

— Manipulate internal variables

Andrew H. Fagg: Embedded 53
Systems: [12C Communication

Master Recelver

What does the FSM look like?

Andrew H. Fagg: Embedded
Systems: [12C Communication

54

(most) Possible Status Codes for
Master Transmitter Case

Status codes Iin response to an interrupt (TWSR register)

From twi.h:

e TW_START

« TW_REP_START

« TW_MR _ARB LOST

« TW_MR_SLA ACK: a slave has acknowledged being
addressed

« TW_MR_SLA NACK: no slave has acknowledged

« TW_MR_DATA _ ACK: data transmitted to slave has been
acknowledged

« TW_MR_DATA NACK : data sent, but not acknowledged
« TW _BUS ERROR: an error has occurred

Andrew H. Fagg: Embedded 55
Systems: [12C Communication

TWI Events: Master as Transmitter

Table 66. Status codes for Master Transmitter Mode

Status Code

Application Software Response

(TWSR) Status of the Two-wire Serial Tolfrom TWDR To TWCR
Prescaler Bits Bus and Two-wire Serial Inter-
are 0 face Hardware STA sTO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted:;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted:
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
Mo TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or MOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
Mo TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or MOT ACK will
ACK has been received be received
Mo TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
Mo TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
Mo TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or data | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free

56

ISR/Main Program Communication

+<—— master_size «——
ISR —smaster buffer——
«— master_state «——
«<—— master_address «—
— master_status —

Andrew H. Fagg: Embedded
Systems: [12C Communication

Main

59

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
«— master_state «——
«<—— master_address «—
— master_status —

Andrew H. Fagg: Embedded 60
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
«— master_state «——
«<—— master _address «—
— master_status —

Andrew H. Fagg: Embedded 61
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
«— master_state «——
«<—— master _address «—
— master_status —

Andrew H. Fagg: Embedded 62
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
«— master_state «——
«<—— master _address «—
— master_status —

Initiate START

Andrew H. Fagg: Embedded 63
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
«— master_state «——
«<—— master_address «—
— master_status —

START Recelved: proceed with remaining transaction

Andrew H. Fagg: Embedded 64
Systems: [12C Communication

ISR/Main Program Communication

<+—— master_size «——
ISR —_.master buffer—— Main
<—— master_state «——
<— master_address «—
— master_status —

START Recelved: proceed with remaining transaction

Andrew H. Fagg: Embedded 65
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —— Mmaster buffer——
— master_state «——
«<—— master_address «—
— master_status —

During transaction

Andrew H. Fagg: Embedded
Systems: [12C Communication

Main

66

ISR/Main Program Communication

+<—— master_size «——
ISR —smaster buffer——
— master_state «——
«<—— master_address «—
— Mmaster_status —

End Transaction
State is DONE or ERROR

Andrew H. Fagg: Embedded
Systems: [12C Communication

Main

67

ISR/Main Program Communication

+<—— master_size «——
ISR —_.master buffer—— Main
— master_state —»
«<—— master_address «—
— Mmaster_status —»

Main “sees” state transition
To DONE or ERROR

Andrew H. Fagg: Embedded 68
Systems: [12C Communication

ISR/Main Program Communication

+<—— master_size «——
ISR —__.master buffer— Main
«— master_state «——
«<—— master_address «—
— master_status —

If DONE, extract buffer contents

Andrew H. Fagg: Embedded 69
Systems: [12C Communication

An ISR Implementation

// FSM state
volatile Int8 _t master_state;

// Number of bytes that the master will receive
volatile uint8 t master_size;

// Buffer that the data i1s being dropped into
volatile uint8 t master_ buffer[BUFFER_SIZE];

// Address of the slave
volatile uiInt8 t master_address;

// Current byte count
uint8 t master_counter;

// Copy of the status register (useful for error
processing)

volatile uint8 t master status;

Andrew H. Fagg: Embedded
Systems: [12C Communication

70

An ISR Implementation

ISR(TWI_vect) {
uint8 t status;
switch(master_state)
{
case 12C_MASTER_STATE_WSTART:
// We were waiting for the start to be asserted
status = twi_get _status();
if(status == TW_START) {
// Send slave address; move on to the next state
master_state = 12C_MASTER_STATE_WADDRESS;
twi_send_byte((master_address & Oxfe) | 0x1);

}else{
// An error has occurred
master_state = 12C_MASTER_STATE_ERROR;
master_status = status;
// We assume that we lost arbitration, so do nothing to
// the hardware
}:
break;

Andrew H. Fagg: Embedded
Systems: [12C Communication

71

Waiting for Address

case 12C_MASTER_STATE_WADDRESS:
status = twi_get status();
iIT(status == TW_MR_SLA ACK) {
// The slave device acknowledged
// We will positively acknowledge the next byte
twi_set_ack(TWI_ACKNOWLEDGE_ENABLE) ;

master_state = 12C_MASTER_STATE_ WDATA;
master_counter = 0;

twi_set_twint(); // Force twint flag to be cleared:

// initiate read transaction

}else{
// An error has occurred
master_state = 12C_MASTER _STATE_ERROR;
twi_send _stop();
master_status = status;
};

break;

Andrew H. Fagg: Embedded
Systems: [12C Communication

12

Waliting for Data

case 12C MASTER_STATE_ WDATA:
// We are waiting for <master_size> bytes of data
status = twi_get _status();
1IT(status == TW_MR_DATA NACK) {
// We did not ACK the last byte
// (so 1t was the last one)
master buffer[master_counter] = twi_get byte();

// We have received all of the bytes
master _state = 12C_MASTER STATE_ DONE;
twi_send stop();
master_ status = status;

}else 1f(status == TW_MR_DATA ACK) {

Andrew H. Fagg: Embedded
Systems: [12C Communication

74

Waliting for Data

case 12C_MASTER_STATE_WDATA:
// We are waiting for <master_size> bytes of data
status = twi_get _status();
if(status == TW_MR_DATA NACK) {

}else i1f(status == TW_MR_DATA ACK) {
// This i1s not the last byte
master_buffer[master_counter] = twi_get byte();
// Increment byte count
++master_counter;

ifT(master_counter == master_size-1) {

// This 1s going to be the last byte to be received
twi_set_ack(TWI_ACKNOWLEDGE DISABLE);
}else{
// This 1s not the last byte
twi_set_ack(TWI_ACKNOWLEDGE_ ENABLE) ;
33
twi_set _twint();
}else{
// An error has occurred

Andrew H. Fagg: Embedded
Systems: [12C Communication

75

Subtleties

 \We transition to the DONE state as we are
Issuing the stop condition

e But: we don’t wait for the stop condition to
be completed

 There is a danger that we will initiate the
next transaction before the previous one Is
really complete

Andrew H. Fagg: Embedded 76
Systems: [12C Communication

Subtleties

For some reason, there does not seem to be an
Interrupt generated for master receive mode
when the stop condition is completed ...

Solution:

« Before the main program is allowed to initiate
the next transmission, it must check that the stop
has occurred:

twi_get_stop() will be true as long as we are still

waiting for the stop to complete (so busy wait on this
condition)

Andrew H. Fagg: Embedded 77
Systems: [12C Communication

Subtleties

A common problem: the interrupt routine
behaves as If it Is never being called

e Chec

e Chec
the S

K 1: Is the interrupt being enabled?
K 2. do you have pull-up resistors on

DA and SCL lines?

Andrew H. Fagg: Embedded
Systems: [12C Communication

78

12C Protocol for the Major
Component

Need to handle both transmission to and
reception from the slave

We will use the mixed protocol as already
described in the above example

You may assume that the master knows a priori
how many bytes will be transferred (N) and how
many will be received (M)

But — the master should properly handle the
case where N=0 or M=0

Andrew H. Fagg: Embedded 79
Systems: [12C Communication

1°C Compass

« Compass exposes a set of registers that
can be read from and written to

« Writing to the compass: standard write 1°C
transaction

e Reading from the compass: mixed I°C
transaction:
— Send a register address
— Start reading bytes

Andrew H. Fagg: Embedded 80
Systems: [12C Communication

Debugging

e Use LEDs to indicate the FSM state

— Help you to determine where your FSM gets
hung

e Use Oscilloscopes
— 2 channels possible: use for SDA and SCL
— Learn how to capture and store traces

e Incremental implementation and
debugging

Andrew H. Fagg: Embedded
Systems: [12C Communication

81

On to SPI ...

Andrew H. Fagg: Embedded
Systems: [12C Communication

82

