
Andrew H. Fagg: Embedded
Systems: Timers

1

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices. These can:

• Be used to count the number of events
that have occurred (either external or
internal)

• Act as a clock
• Trigger an interrupt after a specified

number of events

Andrew H. Fagg: Embedded
Systems: Timers

2

Timer 0

• Possible input sources:
– Pin T0 (PD4)
– System clock

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to

0x0, an interrupt can be generated

Andrew H. Fagg: Embedded
Systems: Timers

3

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded
Systems: Timers

4

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

(counting from 1)

Andrew H. Fagg: Embedded
Systems: Timers

5

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded
Systems: Timers

6

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded
Systems: Timers

7

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

– These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded
Systems: Timers

8

Timer 0 Implementation

MUX selects between
these different inputs

Andrew H. Fagg: Embedded
Systems: Timers

9

Timer 0 Implementation

MUX selects between
these different inputs

• Control bits determine
source

Andrew H. Fagg: Embedded
Systems: Timers

10

Timer 0 Implementation

MUX selects between
these different inputs

• 000: No input

Andrew H. Fagg: Embedded
Systems: Timers

11

Timer 0 Implementation

MUX selects between
these different inputs

• 001: System clock

Andrew H. Fagg: Embedded
Systems: Timers

12

Timer 0 Implementation

MUX selects between
these different inputs

• 010: System clock div 8

Andrew H. Fagg: Embedded
Systems: Timers

13

Timer 0 Implementation

MUX selects between
these different inputs

• 011: System clock div 64

Andrew H. Fagg: Embedded
Systems: Timers

14

Timer 0 Implementation

MUX selects between these
different inputs

• 110: Falling edge of pin T0

Andrew H. Fagg: Embedded
Systems: Timers

15

Timer 0 Implementation

MUX selects between these
different inputs

• 111: Rising edge of pin T0

Andrew H. Fagg: Embedded
Systems: Timers

16

Timer 0

• TCNT0: 8-bit
counter (a register)

• TCCR0: control
register

Andrew H. Fagg: Embedded
Systems: Timers

17

Timer 0

• Clock source from
previous slide

Andrew H. Fagg: Embedded
Systems: Timers

18

Timer 0

• Increment counter
on every low-to-high
transition

Andrew H. Fagg: Embedded
Systems: Timers

19

Timer 0 Example

Suppose:
• 16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to

156

How long does this take?

Andrew H. Fagg: Embedded
Systems: Timers

20

Timer 0 Example

mssdelay 109948
000,000,16
156*1024

≈== μ

Andrew H. Fagg: Embedded
Systems: Timers

25

Timer 0 Example

Suppose:
• 16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to

156

How long does this take?

Andrew H. Fagg: Embedded
Systems: Timers

26

Timer 0 Example

mssdelay 109948
000,000,16
156*1024

≈== μ

Andrew H. Fagg: Embedded
Systems: Timers

28

Timer 0 Code Example
timer0_config(TIMER0_PRE_1024); // Prescale by 1024
timer0_set(0); // Set the timer to 0

// Do something else for a while
while(timer0_read() < 156) {

// Do something while waiting
};

// Break out at ~10 ms

See Atmel HOWTO for example code
(timer_demo2.c)

Andrew H. Fagg: Embedded
Systems: Timers

29

Cascade of Clock Divisors

• Prescalar: 1 to 1024
• Timer 0 counter: up to 256

– In this case, our software waited for timer 0 to
achieve a particular value

• Other timers can choose their divisor
arbitrarily (more on this soon)

Andrew H. Fagg: Embedded
Systems: Timers

30

Timer 0 Example

Advantage over delay_ms():
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of
instructions to be executed

– Interrupts do not interfere with the timing

Andrew H. Fagg: Embedded
Systems: Timers

31

Timer 0 Example

Disadvantage:
• “something else” cannot take very much

time

What is the solution?

Andrew H. Fagg: Embedded
Systems: Timers

32

Timer 0 Interrupt

What is the solution?
• Use interrupts!

• We can configure the timer to generate an
interrupt every time the timer’s counter
rolls over from 0xFF to 0x00

Andrew H. Fagg: Embedded
Systems: Timers

33

Timer 0 Example II

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded
Systems: Timers

34

Timer 0 Example II

msinterval 384.16
000,000,16
256*1024

==

How many counts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded
Systems: Timers

35

Timer 0 Example II

0352.61
384.16

1000
==

ms
mscounts

How many counts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded
Systems: Timers

36

Example II: Interrupt Service
Routine (ISR)

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded
Systems: Timers

37

Example II: Initialization
// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded
Systems: Timers

38

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
– PB0 state is altered asynchronously

• Note that we can have a shared data
problem (but not in this example)

Andrew H. Fagg: Embedded
Systems: Timers

39

Cascade of Clock Divisors

• Prescalar: 1 to 1024
• Timer 0 counter: 256

– Other timers can choose their divisor
arbitrarily

• Software: arbitrary

Andrew H. Fagg: Embedded
Systems: Timers

40

Two Other Timers

Timer 1:
• 16 bit counter

Timer 2:
• 8 bit counter

Andrew H. Fagg: Embedded
Systems: Timers

47

Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short

also
– Minimize looping

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded
Systems: Timers

48

Interrupts, Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded
Systems: Timers

49

Shared Data and Compiler
Optimizations

For example:
A = A + 1;
C = B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded
Systems: Timers

50

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded
Systems: Timers

51

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded
Systems: Timers

52

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded
Systems: Timers

53

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded
Systems: Timers

54

Information Encoding

Many different options for encoding
information for transmission to/from other
devices:

• Parallel digital (e.g., for our Project 1)
• Serial digital (e.g., USB, RS232)
• Analog: use voltage to encode a value

Andrew H. Fagg: Embedded
Systems: Timers

55

Information Encoding

An alternative: pulse-width modulation
(PWM)

• Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded
Systems: Timers

56

PWM Example:

RC Servo Motors
• 3 pins: power (red),

ground (black), and
command signal (white)

• Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded
Systems: Timers

57

PWM Example

Internal circuit translates pulse width into a goal
position:

• 0.5 ms: 0 degrees
• 2.5 ms: 180 degrees

Andrew H. Fagg: Embedded
Systems: Timers

58

RC Servo Motors

• Internal potentiometer measures the
current orientation of the shaft

• Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded
Systems: Timers

59

PWM Example II:
Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded
Systems: Timers

60

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded
Systems: Timers

61

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded
Systems: Timers

62

Controlling LED Brightness
Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded
Systems: Timers

63

Controlling LED Brightness

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded
Systems: Timers

64

Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

counter
• When the counter is 0, turn the LED on
• When the counter reaches some

“duration”, turn the LED off

Andrew H. Fagg: Embedded
Systems: Timers

65

volatile uint8_t counter = 0;
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

}

Andrew H. Fagg: Embedded
Systems: Timers

67

Back to Our Interrupt
Implementation …

volatile uint8_t counter, duration;

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 0)

PORTB |= 1;
if(counter >= duration)

PORTB &= ~1;
}

Andrew H. Fagg: Embedded
Systems: Timers

68

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded
Systems: Timers

69

Initialization
int main(void) {

DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMER0_NOPRE); // No prescaler
// Enable the timer interrupt
timer0_enable();
// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded
Systems: Timers

70

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded
Systems: Timers

71

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

st μ16
16000000

256
==

Andrew H. Fagg: Embedded
Systems: Timers

72

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded
Systems: Timers

73

PWM Implementation

What is the period of the pulse?
• The 8-bit counter (of the interrupt) expires every

256 interrupts

mst 096.4
16000000

256*256
==

Andrew H. Fagg: Embedded
Systems: Timers

74

Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i)
duration = i;
delay_ms(50);

};
};

}

Andrew H. Fagg: Embedded
Systems: Timers

75

Timer 1

• 16 bit counter
– All the same functionality as we see with timer 0

• One input capture unit
– On an external event, save the state of the

counter
• Two output compare units

– Generate an event when the counter reaches a
certain state

Andrew H. Fagg: Embedded
Systems: Timers

76

Timer 1

Figure from: Atmel mega 8 specification

Andrew H. Fagg: Embedded
Systems: Timers

77

Timer 1

Counter

Andrew H. Fagg: Embedded
Systems: Timers

78

Timer 1

Source
selection
and
prescaler

Andrew H. Fagg: Embedded
Systems: Timers

79

Timer 1

Output
compare
register

• Continuously
compared
with counter

Andrew H. Fagg: Embedded
Systems: Timers

80

Timer 1

On match:
• Change the

state of an
output pin

• And/or
generate an
interrupt

Andrew H. Fagg: Embedded
Systems: Timers

81

Timer 1

Output
compare
register II

Andrew H. Fagg: Embedded
Systems: Timers

82

Timer 1

Input capture
register:

• On external
event, copy
state of
counter

Andrew H. Fagg: Embedded
Systems: Timers

85

Timer 1: Register Access and Timing

Problem: 8 bit data bus, but 16 bit registers
• How to access the registers so as to avoid

the shared data problem?
Figure from: Atmel mega 8 specification

Andrew H. Fagg: Embedded
Systems: Timers

86

• Write to the high byte first (TCNTnH)
– This stores the 8-bit value in a temporary register

• Write to low byte (TCNTnL)
– What is on the data bus is written to the low byte
– The temporary register is written to the high byte
(so both are changed simultaneously)

Timer 1: Writing

Andrew H. Fagg: Embedded
Systems: Timers

87

• Read from the low byte first (TCNTnL)
– TCNTnH will also be written to the temporary

register
• Read from high byte (TCNTnH)

– This will actually pull the value from the
temporary register

Timer 1: Reading

Andrew H. Fagg: Embedded
Systems: Timers

88

Timer 1 Access: The Good News

• OUlib provides functions to do this for you:
unsigned int timer1_read(void);
void timer1_set(unsigned int);

• The caveat:
– OUlib is “thread safe”
– Interrupts are disabled between access of the

high and low registers (see implementations)

Andrew H. Fagg: Embedded
Systems: Timers

92

Input Capture Unit

Figure from: Atmel mega 8 specification

Andrew H. Fagg: Embedded
Systems: Timers

93

Input Capture Unit

Figure from: Atmel mega 8 specification

Captured value
• Access just as

you would
TCNTn[HL]

Andrew H. Fagg: Embedded
Systems: Timers

94

Input Capture Unit

Figure from: Atmel mega 8 specification

Copy on event

Andrew H. Fagg: Embedded
Systems: Timers

95

Input Capture Unit

Figure from: Atmel mega 8 specification

Event detector

Andrew H. Fagg: Embedded
Systems: Timers

96

Input Capture Unit

No OUlib support right now…

Critical registers:
• ICRn[LH]: captured value
• TCCR1B: configuration
• ACSR: event source selection
• TIMSK: interrupt enable bit

Andrew H. Fagg: Embedded
Systems: Timers

97

Input Capture Unit: TCCR1B

• ICNC1: Input compare noise canceller
– Value = 1 -> canceling is turned on
– Takes multiple samples of the pin state before

detecting an event (this induces a small delay
but gives a cleaner signal)

• ICES1: Input compare edge select
– Value = 1 -> rising edge
– Value = 0 -> falling edge

Andrew H. Fagg: Embedded
Systems: Timers

98

Input Capture Unit: ACSR

ACIC: External event source
• Value = 1 -> Analog comparator
• Value = 0 -> ICPn pin

Andrew H. Fagg: Embedded
Systems: Timers

99

Input Capture Unit: TIMSK

• TICIE1: Input capture interrupt enable
– Value = 1 -> enabled

Andrew H. Fagg: Embedded
Systems: Timers

100

Some Example Code
// Turn on noise canceling; detect
rising edge

TCCR1B |= _BV(ICNC1) | _BV(ICES1);

1 1

Andrew H. Fagg: Embedded
Systems: Timers

101

Some Example Code
// Turn on noise canceling; detect
rising edge

TCCR1B |= _BV(ICNC1) | _BV(ICES1);
// Use pin as input (not analog comp)
ACSR &= ~_BV(ACIE);

0

Andrew H. Fagg: Embedded
Systems: Timers

102

Some Example Code
// Turn on noise canceling; detect
rising edge

TCCR1B |= _BV(ICNC1) | _BV(ICES1);
// Use pin as input (not analog comp)
ACSR &= ~_BV(ACIE);
// Enable interrupt
TIMSK |= _BV(TICIE1);

1

Andrew H. Fagg: Embedded
Systems: Timers

103

Some Example Code
// Turn on noise canceling; detect
rising edge

TCCR1B |= _BV(ICNC1) | _BV(ICES1);
// Use pin as input (not analog comp)
ACSR &= ~_BV(ACIE);
// Enable interrupt
TIMSK |= _BV(TICIE1);
// Enable global interrupts
sei();

Andrew H. Fagg: Embedded
Systems: Timers

104

Interrupt Service Routine
ISR(TIMER1_CAPT_vec)
{

// Do something …
}

• Read ICRn[LH] as soon as possible (it
could be overwritten by the next event)

• You can change the configuration of the
input capture unit (e.g. to alternate
between falling and rising edges)

Andrew H. Fagg: Embedded
Systems: Timers

105

Output Compare Mode

General idea:
• Counter moves through some sequence of

values
• At some specified counter value(s), the

processor produces an event
– Generate an interrupt
– Change the state of the output pin

Andrew H. Fagg: Embedded
Systems: Timers

106

Many Different Output Compare
Modes

Andrew H. Fagg: Embedded
Systems: Timers

107

We Will Focus on Fast PWM

Andrew H. Fagg: Embedded
Systems: Timers

108

Output Compare Mode: Fast PWM

Generating a pulse width modulated signal:
• Counter increments from BOTTOM (0) to

TOP (configurable). Once TOP is
reached:
– Set the state of an output pin (e.g., set to 1)
– Roll over to BOTTOM

• When the counter reaches a specific
intermediate value:
– Change the state of the output pin (e.g. to 0)

Andrew H. Fagg: Embedded
Systems: Timers

109

Andrew H. Fagg: Embedded
Systems: Timers

110

0x3ff

0x101

0x103

Andrew H. Fagg: Embedded
Systems: Timers

111

0x3ff

0x102

0x103

Andrew H. Fagg: Embedded
Systems: Timers

112

0x3ff

0x103

0x103
Set pin to 0

Generate interrupt

Andrew H. Fagg: Embedded
Systems: Timers

113

0x3ff

0x3fe

0x103

Andrew H. Fagg: Embedded
Systems: Timers

114

0x3ff

0x3ff

0x103
Set pin to 1

Andrew H. Fagg: Embedded
Systems: Timers

115

PWM and Interrupt Frequency

Example:

This gives us 10 bits of pulse width resolution

)1(* TOPprescalar
freqclockfreqpwm
+

=

Hz
ffx

freqpwm

2588.15
)301(*1024

000,000,16

=
+

=

Andrew H. Fagg: Embedded
Systems: Timers

116

Use of this
waveform
generator
overrides
PORTx

Pin Driver
Circuit

Andrew H. Fagg: Embedded
Systems: Timers

117

OCRnA is
double-buffered

• The real
OCRnA as
shown is
updated when
the counter
rolls over

• Eliminates
problems with
updates in the
middle of your
pulse

Andrew H. Fagg: Embedded
Systems: Timers

118

Configuration

• Prescalar
• Waveform Generation Mode (in our case,

Fast PWM, 10 bit)
• Polarity of the output bit (Output Mode)
• Interrupt enable (if desired)
• Initial pulse width

Andrew H. Fagg: Embedded
Systems: Timers

119

Configuration
// Configure PWM for output compare pin A

// Prescaler
timer1_config(TIMER1_PRE_1024);

Prescaler configuration is the same as with
timer0

Andrew H. Fagg: Embedded
Systems: Timers

120

Configuration
// Configure PWM for output compare pin A
// Prescaler
timer1_config(TIMER1_PRE_1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~_BV(COM1A0) | _BV(COM1A1);

01

Andrew H. Fagg: Embedded
Systems: Timers

121

Configuration
// Configure PWM for output compare pin A
// Prescaler
timer1_config(TIMER1_PRE_1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~_BV(COM1A0) | _BV(COM1A1);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

1 1

Andrew H. Fagg: Embedded
Systems: Timers

122

Configuration
// Configure PWM for output compare pin A
// Prescaler
timer1_config(TIMER1_PRE_1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~_BV(COM1A0) | _BV(COM1A1);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1B & ~_BV(WGM13) | _BV(WGM12);

0 1

Andrew H. Fagg: Embedded
Systems: Timers

123

Configuration
// Configure PWM for output compare pin A
// Prescaler
timer1_config(TIMER1_PRE_1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~_BV(COM1A0) | _BV(COM1A1);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt
TIMSK |= _BV(OCIE1A);

1

Andrew H. Fagg: Embedded
Systems: Timers

124

Configuration
// Configure PWM for output compare pin A
// Prescaler
timer1_config(TIMER1_PRE_1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~(_BV(COM1A1) | _BV(COM1A0));

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt
TIMSK |= _BV(OCIE1A);

// Enable global interrupts
sei();

Andrew H. Fagg: Embedded
Systems: Timers

125

Use of PWM Generator

Change the pulse width at any time
• This change will take effect at the

beginning of the next pulse
• Must deal with the synchronous update of

the high and low byte of OCR1A

Andrew H. Fagg: Embedded
Systems: Timers

126

Continuously Varying Pulse Width

while(1);
{
// Loop over entire range
for(val=0; val<0x400; ++val) {
// Write high byte first (goes to temporary register)
OCR1AH = (uint8_t) (val >> 8);

// Write low byte second (causes both to be written
// simultaneously)
OCR1AL = (uint8_t) (val & 0xff);

// Sleep
delay_ms(1);

};
};

Andrew H. Fagg: Embedded
Systems: Timers

127

Temporary Register

• Registers such as OCR1AH are all mapped
to the same temporary register

• You must ensure that between the writes
to OCR1AH and OCR1AL that no other code
is executed that manipulate the temporary
register

• This can come up if your ISR is also
modifying these registers

Andrew H. Fagg: Embedded
Systems: Timers

128

Timer 2

• 8-bit counter
• Output-compare
• Waveform generator

– So: can also generate PWM signals

