Atmel Mega8 Basics

 Complete, stand-
alone computer

e Qursis a 28-pin
package

* Most pins:

— Are used for
Input/output

— How they are used

IS configurable

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [ 6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6 ]9 20 b Avece
(XTAL2/TOSC2) PB7 [ 10 19 |1 PB5 (SCK)
(T1) PD5 ] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [] 13 16 [0 PB2 (SS/0OC1B)
(ICP1) PBO [] 14 15 [1 PB1 (OC1A)
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Key Features

Up to 16 MIPS (single cycle for most instructions)
~23 digital pins: configurable as inputs or outputs
6 channel, 10-bit analog-to-digital converter
Serial communication support: RS232, SPI, 12C
3 counter/timers (2 8-bit; 1 16-bit)
Internal/external interrupt support

Brown-out detection

Internal oscillator (1 MHz)

Bootloader support

Sleep mode

Watchdog timer angew H. Fagg: Embedde 4
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Interrupt Sources

External pins: state change; falling/rising
edge

Timer/counters: when counter overflows
Communication peripherals

Brown out

Analog to digital conversion complete

Andrew H. Fagg: Embedded
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Atmel Mega8 Basics

_ PDIP
Power (we will use -
(RESET) PC6 [ 1 28 [1PC5 (ADC5/SCL)
+5V) (RXD) PDO ]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 3 26 [1PC3 (ADC3)
(INTO) PD2 ] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
KIT 6 23 [1 PCO (ADCO)
< VCC L > 22 [ 1GND
8 21 [ 1 AREF
(XTAL1/TOSC1) PB6 ]9 20 J AVCC
(XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK)
(T1) PD5 ] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 ] 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO ] 14 15 [0 PB1 (OC1A)
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Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6 ] 1 28 |1 PC5 (ADC5/SCL)
(RXD)PD0OO2 27 |1 PC4 (ADC4/SDA)
(TXD) PD1[]3 26 |1 PC3 (ADC3)
INTO) PD2 ] 4 25 |1 PC2 (ADC2)
5 24 11 PC1 (ADC1)
CK/TO) PDA L 6~ ? (ADCO)
22 [ 1GND
(GND C 8) 2 EF
(XTAL1/TOSC1) P 9 20 J AVCC
(XTAL2/TOSC2) PB7 [ 10 19 [0 PB5 (SCK)
(T1) PD5 [ 11 18 [1 PB4 (MISO)
(AINO) PD6 [ 12 17 @ PB3 (MOSI/OC2)
(AIN1) PD7 Q13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 [0 PB1 (OC1A)
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Atmel Mega8 Basics

PDIP
Reset _ =
_ CRESET) PCo ] 1 28 [1 PC5 (ADC5/SCL)
e Bring low to reset = “mereeer 27 [1PC4 (ADCA/SDA)
(TXD) PD1 ] 3 26 [1 PC3 (ADC3)
the processor (INT0) PD2 ] 4 25 [1PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADCH1)
° I (XCK/TO) PD4 ] 6 23 [0 PCO (ADCO)
In general, we wil poage  2pRoo
tie this pin to high anpe 21 [LAREE
(XTAL1/TOSC1) PB6 ] 9 20 [ Avee
through a pu”_up (XTAL2/TOSC2) PB7 [ 10 19 [0 PB5 (SCK)
. (T1) PD5 [ 11 18 [d PB4 (MISO)
resistor (1OK Ohm) (AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 []13 16 |1 PB2 (SS/0C1B)
(ICP1) PBO ] 14 151 PB1 (OC1A)
Andrew H. Fagg: Embedded 8
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Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [ 6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND []8 21 [0 AREF
(XTAL1/TOSC1) PB6 J 20 )4
(XTAL2/TOSC2) PB7 ED Y[ PB5 (SCK)
5] 11 8 [0 PB4 (MISO)
(AINO) PD6 [] 12

(AIN1)
(ICP() PBO [

—rt Y
(98]

1 PB2 (SS/0C1B)

(
(

] PB3 (MOSI/OC2)
(SS.

(] PB1 (

OC1A
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Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD
(INTO
(INT1

(XCK/TO

PD1 [
PD2
PD3 [
PD4 [
Veloln
GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7 [
(T1) PD5
(AINO) PD6 [
)

)

T T e

(AIN1) PD7 [
(ICP1) PBO [

S

19 1PB5
18 |1 PB4
17 1 PB3
16 |1 PB2
15 |1 PB1

SCK)
MISO)
MOSI/OC2)
(SS/OC1B)
OC1A)

—‘—\a—-a—-ha—-na—-n
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Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP
T
(RE 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3 [ 24 1 PC1 (ADCH)
K/TO) PD4 23 [0 PCO (ADCO)
7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6 ]9 20 b Avece
(XTAL2/TOSC 10 19 |1 PB5 (SCK)
(T1) PD5 ] 1 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
AIN1) PD7 ] 1 16 [0 PB2 (SS/0OC1B)
(ICPT) PBO ] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded
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A First
Circult

28 27 26 25 24 23 22
ENESEEEEEEENE

21 20 19 18 17 16 15
INENEEEEENEEEEE

PC5 PC3 PCl
PC4 PC2 PCO

) Atme

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2

VCC PB6 PD5S PD7

AREF PB5 PB3 PBI

1 Mega8

GND PB7 PD6 PBO

NN EREREEEN
2 3 4 5 6 7

Juguuuuuu

I 8 10 11 12 13 14
| Vi
! MM—
+5V 200 ohm
S
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Common Special-Purpose
Registers

Program counter
Status register
Instruction register
Stack pointer

Peripheral control is all done through
registers

Andrew H. Fagg: Embedded
Systems: Atmel Basics
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Atmel Mega8

8-bit data bu

 Primary
mechanism
for data
exchange

Data Bus 8-bit

Program Status
Flash - Ea
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General
Register Purpose SP
Registrers Unit
3
Instruction Watchdog
Decoder - Timer
(=] =
= ‘B
W w
l 8 £ Analog
Control Lines = pe. Comparator
= 3
[ o
@ =
= =
= = i/O Module1
i'O Module 2
i'O Module n
EEPROM
I/O Lines
14

Andrew H. Fagg: Embedded
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Atmel Mega8
«

32 general
purpose
registers

e 8 bits wide

e 3 pairs of
registers can
be combined
to give us 16
bit registers

Data Bus 8-bit

:

Program

Flash ¥ Baihtar

Program

Memory

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose
Registrers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n
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Atmel Mega8
«

Special
purpose
registers

Program
Counter

Instruction
Register

Data Bus 8-bit

Status
and Control

Instruction
Decoder

e Control of the
Internals of
the
processor

Andrew H. Fagg: Embedded

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

16




Atmel Mega8
«

Random Access
Memory (RAM)
1 KByte In size

e Globals, heap
and stack are
stored here

Data Bus 8-bit

:

Andrew H. Fagg: Embedded
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Interrupt
Unit

SPI
Unit

Program Status
PEZ?Q » n Counter ol and Control
Memory =
l 32x8
Instruction General
Register Purpose
o Registrers
= y h 4
< N
w
3 ALU
5 =
Control Lines Z
3
3

1/O Lines i

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

19




Atmel Mega8
«

Flash (EEPROM

 Program
storage

8 KByte In size
e 16 bit words

Data Bus 8-bit

:

Flash
Program
Memory

Program
Counter

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded
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Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
» /O Module n
EEPROM ol
I/O Lines g —i
20




Atmel Mega8
«

EEPROM

e Permanent
data storage

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

:

Instruction
Register

3

Instruction
Decoder

Andrew H. Fagg: Embedded

Direct Addressing
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Indirect Addressing

Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
e
» /O Module n
I/O Lines g —i
21




Atmel Mega8
«

Arithmetic
Logical Unit

e Data Inputs
from registers

e Control inputs
not shown
(derived from
Instruction
decoder)

Data Bus 8-bit

Program
Counter

Memory =

and Control

Status

Instruction
Decoder

l

Control Lines

Direct Addressin

Indirect Addressi

Andrew H. Fagg: Embedded
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EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

/O Module 2

Y

i/O Module n

22




Processors in the Atmel Family

 Memory/program size
e Different numbers and types of I/O pins

e Custom support for other communication
protocols (e.g., CANbus)

Andrew H. Fagg: Embedded
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Instruction Fetch/Execution Cycle

T1 T2 T3 T4

ok —4 N/ \_J _ /)

CPU
1st Instruction Fetch —<

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

N \

___._____;<_;;__ ___

From Atmel Mega8 spec

« While one instruction is being executed, the next is
already being fetched from memory

* In many cases: each step happens on a single clock
cycle

Andrew H. Fagg: Embedded 24
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Instruction Execution Cycle

T1 T2 T3 T4
|
[
[
|

AP A N A N A N A N

CPU

| | |
| 1 |
| | |
| 1 1
| | | |
Total Execution Time ——X > : :
| | 1 |
Register Operands Fetch : : : :
| | | |
ALU Operation Execute 4 e : :
| | | |
_ | — I |
Result Write Back . .
I \_:‘/ 1 I
| 1 |

Address the registers and walit for the values
to become avallable

Andrew H. Fagg: Embedded 25
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Instruction Execution Cycle

T1 T2 T3 T4

clkcpy ,
Total Execution Time ——K

|
Register Operands Fetch — >

|
ALU Operation Execute : O
|
i |
Result Write Back i < )
u | | /—"\,

Perform the operation dictated by the
Instruction

Andrew H. Fagg: Embedded 26
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Instruction Execution Cycle

T1 T2 T3 T4

clkcpy
Total Execution Time ——X

N
4

Register Operands Fetch — >

ALU Operation Execute

|
|
|
|
|
T
|
|
|
|
N~/ !
|

Result Write Back 4 >

7 T
Result stored in destination register
Status register state changed

Andrew H. Fagg: Embedded 27
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Data Bus 8-bit

Atmel Mega8
«

:

= Flash -t Fg;:g:ﬂaen: nl anciS tgi:unir B i
Control the pins i o :
through th ‘ =
roug € o gororal food =
< Registrers - Unit
/O modules
Decoder - 4 Y *™  Timer
e At the heart, ' | | wo N
Control Lines § Z Comparator
3 g N\
these are -
- 2D
- N 7
registers ... .
—pgt— /O Module 2

» SRAM

that are » /O Module n
|mp|emented EEPROM  |a—m
using D flip- T, |

ﬂOpSl Andrew H. Fagg: Embedded 28
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/O Pin Implementation

Single bit of
PORT B

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

The physical
pIN

A

Bll| (=

l DDRXx
& QD leg

RESET
1!'
3 N
L
PORTX
- rd! > PN o D O
\l PORTxn
T, 4
| _|— WPx
RESET
N
|
PINX L RPx
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

DDRB \b’
e Defines

whether
this Is an

Pxn

—<

(==

Input or an
output

JA

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:
RDx:

X
RRBx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS



/O Pin Implementation

PORTB

e Defines the
value that
IS written _
out to the
pin (If It IS
an output) PINX

11— (= l

<1
4

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

Tristate buffer
« When this
pin is an

output pin, It

allows the

Bll|

(==

|

PORTB flip-

flop to drive
the pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS



/O Pin Implementation

Input tri-state

buffer

Pxn

A

Bll|

(==

RRx

RPx

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS



/O Pin Implementation

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



DDRB

/O Pin Implementation

0

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

DDRB =

e “0” Is written to
the data bus

0

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
L
PORTX
& . rd! > PN o D
\l PORTxn ‘
T, 4
| _|— WPx
RESET
N
|
PINX  ——— e
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

0

DATA BUS



/O Pin Implementation 0

DDRB = 0: [ =1

AA A
LA A J

e “0” Is written to
the data bus

* This is input to '
the DDRB regqister

%
[
&
Z\
L.
®
@
o
=]

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DDRB =

e “0” Is written to
the data bus
 This is input to
the DDRB regqister
« WDB is clocked
from high to low

0

AA A
LA A J

Bll|

(==

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



/O Pin Implementation

DDRB = O;

e “0” Is written to the

AA A
LA A J

Bll|

(==

l . 0 DDRX

data bus

 This is input to the
DDRB register

* WDB is clocked from
high to low

» “0” is stored by the
flip-flop

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



/O Pin Implementation 0

DDRB = O; =i | .0 porx

:E r RDx
* “0” Is written to the data 0 v @
bus o} ——a— < ¢ g <
e This is input to the 2§ E
DDRB register RESET
« WDB is clocked from N
high to low P
« “0” is stored by flip-flop PINX O
» Which turns off the tri- L

state buffer

clk o

-> this is an input pin

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

< (= l -

0 DDRX
Q D 4'

DDRB = 1;

DDxn

T, 4
| _|— WDx

RESET

AA A
LA A J

e “1” Is written to the
data bus

A=
@)
A
_|
X

2
DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

DDRB = 1;

e “1” Is written to the

AA A
LA A J

Bll|

(==

l . 1 DDRX

Bl

data bus

 This is input to the
DDRB register
 WDB is clocked from
high to low

» “1” is stored by flip-flop
* Which turns on the tri-
state buffer

-> this is an output pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

1

DATA BUS



PORTB

/O Pin Implementation

A

:1;

Pxn

1 (=
l 1 DDRX
& a D <
DDxn
GU.H <
| _|_ WDx
RESET
>
3 N S
1 -
PORTX
4'4 o D
¢ t \l ¢ 1 1 PORTxn ‘
T, 4
| _|— WPx
RESET
N
L~
PINX  ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation 1

PORTB = 1: [ =1

AA A
LA A J

e “1” Is written to the
data bus

 This is input to the
PORTB register

A ym

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

PORTB = 1: [ =1

AA A
LA A J

A ym

* “1” is written to the | .
data bus - 1
 This is input to the
PORTB register
 WPB is clocked from
high to low PINX
» “1” is stored by flip-flop

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

PORTB =

e “1” Is written to the

1;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “1” is stored by flip-flop

* Which provides a “1”
the tri-state buffer

-> output a “1”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— 1 <J & ® 4 <
1 1 2
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN




/O Pin Implementation 0

PORTB =

e “0” Is written to the
data bus

AA A
LA A J

Bll|

(==

A ym

o)
B
< o
o> 1 “J o \ 4 = ﬂ:
1 1, 5
a
RESET
PINX T
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation 0

PORTB =

e “0" Is written to the

O;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “0” is stored by flip-flop

* Which provides a “0”
the tri-state buffer

-> output a “0”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— O <J & ® 4 <
0 ol =
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN




foo

/O Pin Implementation

PORTB;

A

AA A
LA A J

PUD

Bll|

(==

l 1 DDRXx
& QD leg

A ym

DDxn

T, 4
| _|— WDx

RESET

Pxn

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS



/O Pin Implementation

foo = PORTB: [ =1

AA A
LA A J

. . 1 3

* RPB is set high — | = | - o
\l PORTxn ﬂ:

0 0 0= - %

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

foo = PORTB: [ =1

AA A
LA A J

o)

 RPB is clocked from— | ,J{ | . @
. o~ <
high to low 0 0 =
« “0” is written to the 3

data bus

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DDRB = O;

* “0” Is written to the data
t)LJS; Pxn

AA A
LA A J

Bll|

(==

 This is input to the
DDRB register

 WDB is clocked from
high to low

» “0” is stored by flip-flop
e Which turns off the tri-
state buffer

-> this is an input pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



foo

/O Pin Implementation

A

PINB;

Pxn

11— (=
l 0 DDRX
& a D <
DDxn
Gu.n <
| _|_ WDx
RESET
>
E: h RDx
0 -
L PORTX
< a D
¢ \IO ¢ 1 O PORTxn ‘
UU.H <
| _|— WPx
RESET
N
L~
PINX  ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

foo = PINB: [ =1

AA A
LA A J

o)

* RPB is set high - | JQ. | L 3
N PORTxn {

O O O, 4 g

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DATA BUS

:“ <l| (} PUD
foo = PINB; | O porex
b & 0 D |g
T, %
| _|—WDX
RESET
< RDx
3 N —
O L
* RPB is clocked from— )5 | e ORTX
- \l PORTxn
high to low 0 Ol <
e The pin state is e L we
copied to the data bus g
L
PINX Px
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN



Bit Manipulation

PORTB Is a register

« Controls the value that is output by the set
of port B pins

e But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually
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Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded
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Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded
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Bit-Wise Operators

01011110 A
10011011 B
? C=A&B
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Bit-Wise Operators

o

0101111 A
1001101\%/ B
C=A&B
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Bit-Wise Operators

0101111® A
1001101\1/ B

v

0 C=A&B
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Bit-Wise Operators

010111ﬁb A

100110

il B

y
f

0 C=A&B
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Bit-Wise Operators

01011110 A
10011011 B
00011010 C=A&B
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Bit-Wise Operators

Other Operators:
e OR: |
e XOR: A
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A 4:
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 07
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A = A & OxXFB;

A &= ~4:

Andrew H. Fagg: Embedded
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A First
Program

Flash the
LEDs at a
regular
Interval

e How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PCh PCH BCL GND

PC4 PC2

PDO  PD2
PC6 PD1 PD3

VCC

PCO AREF PB5
) Atmel Mega8

PD4 GND PB7

AVCC PB4 PB2
PB3 PBI

PD6 PBO
PB6 PD5 PD7

1 4 5 o6 7

LJJ)_ISUI_IUI_ILJL

LD L L L
9 10 1T 12 13 14

200 ohm

Andrew Jr

~ o~
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A First
Program

How do we
flash the LED
at a regular
Interval?

* We toggle the
state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 77 8 9 10 11 12 13 14
LT
YW * ¥
* W
+5V 200 ohm
Andrew o

~ o~
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/O Pin Implementation

Single bit of
PORT B

Pxn

A

<< (=
l DDRx
& a D <
DDxn
Gl;l.fl <
| _|_ WDx
RESET
1.
3 L
L~
PORTX
= 1 o D
¢ \l ¢ 1 PORTxn
UU.H <
| _|— WPx
RESET
2 SLEEP r RRx
V’
SYNCHRONIZER
—_—_— RPx
I D« 0 Q _I_V
I PINxn I
I |— L T [> [+] I PINX
I_ ————— _: clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRx: READ PORTx REGISTER

RPx:

READ PORTx PIN

DATA BUS



A First Program

main() {
DDRB = Ox1; // Pin 0O to output
while(1) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec
+
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A Second Program

main() {
DDRB = 0x3; // Set all port B pins as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec

PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);
PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);

What does this program do?
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A Second Program

main() {

DDRB = OxFF; // Set all port B pins as outputs

while(l) {

PORTB = PORTB ™ 0Ox1;

delay ms(500);

PORTB = PORTB ™ 0x2;

delay ms(250);

PORTB = PORTB ™ Ox2;

delay ms(250);

// XOR bit O with 1
// Pause for 500 msec
// XOR bit 1 with 1

// XOR bit 1 with 1

Flashes LED on PB1 at 1 Hz
on PBO: 0.5 Hz
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More Bit Masking

e Suppose we have a 3-bit number (so
values 0 ... 7)

e Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

 How do we express this in code?
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Bit Masking

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

uint8 t val; // A short is 8-bits wide
val = command_to_ robot; // A value between 0 and 7
PORTB = (PORTB & ~0x38) // Set the current B3-B5 to Os

| ((val & 0Ox7)<<3); // OR with new values (shifted
// to fit within B3-B5
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Reading the Digital State of Pins

Given: we want to read the state of PB6 and

OW C
OW C

OW C

PB7 and obtain avalue of 0 ... 3

0 we configure the port?
0 we read the pins?
o0 we translate their values into an

integer of 0 .. 37
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Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide
val = PINB;

outval = (val & 0xC0O) >> 6;
+
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Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional |  Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND
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A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O = O; // Set bit O to O

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OXFE;

or

PORTA &= ~1;

or

PORTA = PORTA & ~1;
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Putting It All Together

 Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

 Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
It from your circuit
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