Atmel Mega8 Basics

 Complete, stand-
alone computer

e Qursis a 28-pin
package

* Most pins:

— Are used for
Input/output

— How they are used

IS configurable

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6]9 20 b Avece
(XTAL2/TOSC2) PB7 [10 19 |1 PB5 (SCK)
(T1) PD5] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [] 13 16 [0 PB2 (SS/0OC1B)
(ICP1) PBO [] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Key Features

Up to 16 MIPS (single cycle for most instructions)
~23 digital pins: configurable as inputs or outputs
6 channel, 10-bit analog-to-digital converter
Serial communication support: RS232, SPI, 12C
3 counter/timers (2 8-bit; 1 16-bit)
Internal/external interrupt support

Brown-out detection

Internal oscillator (1 MHz)

Bootloader support

Sleep mode

Watchdog timer angew H. Fagg: Embedde 4

Systems: Atmel Basics

Interrupt Sources

External pins: state change; falling/rising
edge

Timer/counters: when counter overflows
Communication peripherals

Brown out

Analog to digital conversion complete

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Atmel Mega8 Basics

_ PDIP
Power (we will use -
(RESET) PC6 [1 28 [1PC5 (ADC5/SCL)
+5V) (RXD) PDO]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 3 26 [1PC3 (ADC3)
(INTO) PD2] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
KIT 6 23 [1 PCO (ADCO)
< VCC L > 22 [1GND
8 21 [1 AREF
(XTAL1/TOSC1) PB6]9 20 J AVCC
(XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK)
(T1) PD5] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO] 14 15 [0 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6] 1 28 |1 PC5 (ADC5/SCL)
(RXD)PD0OO2 27 |1 PC4 (ADC4/SDA)
(TXD) PD1[]3 26 |1 PC3 (ADC3)
INTO) PD2] 4 25 |1 PC2 (ADC2)
5 24 11 PC1 (ADC1)
CK/TO) PDA L 6~ ? (ADCO)
22 [1GND
(GND C 8) 2 EF
(XTAL1/TOSC1) P 9 20 J AVCC
(XTAL2/TOSC2) PB7 [10 19 [0 PB5 (SCK)
(T1) PD5 [11 18 [1 PB4 (MISO)
(AINO) PD6 [12 17 @ PB3 (MOSI/OC2)
(AIN1) PD7 Q13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 [0 PB1 (OC1A)
Andrew H. Fagg: Embedded 7

Systems: Atmel Basics

Atmel Mega8 Basics

PDIP
Reset _ =
_ CRESET) PCo] 1 28 [1 PC5 (ADC5/SCL)
e Bring low to reset = “mereeer 27 [1PC4 (ADCA/SDA)
(TXD) PD1] 3 26 [1 PC3 (ADC3)
the processor (INT0) PD2] 4 25 [1PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADCH1)
° I (XCK/TO) PD4] 6 23 [0 PCO (ADCO)
In general, we wil poage 2pRoo
tie this pin to high anpe 21 [LAREE
(XTAL1/TOSC1) PB6] 9 20 [Avee
through a pu”_up (XTAL2/TOSC2) PB7 [10 19 [0 PB5 (SCK)
. (T1) PD5 [11 18 [d PB4 (MISO)
resistor (1OK Ohm) (AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 []13 16 |1 PB2 (SS/0C1B)
(ICP1) PBO] 14 151 PB1 (OC1A)
Andrew H. Fagg: Embedded 8

Systems: Atmel Basics

Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND []8 21 [0 AREF
(XTAL1/TOSC1) PB6 J 20)4
(XTAL2/TOSC2) PB7 ED Y[PB5 (SCK)
5] 11 8 [0 PB4 (MISO)
(AINO) PD6 [] 12

(AIN1)
(ICP() PBO [

—rt Y
(98]

1 PB2 (SS/0C1B)

(
(

] PB3 (MOSI/OC2)
(SS.

(] PB1 (

OC1A

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD
(INTO
(INT1

(XCK/TO

PD1 [
PD2
PD3 [
PD4 [
Veloln
GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7 [
(T1) PD5
(AINO) PD6 [
)

)

T T e

(AIN1) PD7 [
(ICP1) PBO [

S

19 1PB5
18 |1 PB4
17 1 PB3
16 |1 PB2
15 |1 PB1

SCK)
MISO)
MOSI/OC2)
(SS/OC1B)
OC1A)

—‘—\a—-a—-ha—-na—-n

Andrew H. Fagg: Embedded
Systems: Atmel Basics

10

Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP
T
(RE 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [4 25 [0 PC2 (ADC2)
(INT1) PD3 [24 1 PC1 (ADCH)
K/TO) PD4 23 [0 PCO (ADCO)
7 22 0 GND
GND[]8 21 [0 AREF
(XTAL1/TOSC1) PB6]9 20 b Avece
(XTAL2/TOSC 10 19 |1 PB5 (SCK)
(T1) PD5] 1 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
AIN1) PD7] 1 16 [0 PB2 (SS/0OC1B)
(ICPT) PBO] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

11

A First
Circult

28 27 26 25 24 23 22
ENESEEEEEEENE

21 20 19 18 17 16 15
INENEEEEENEEEEE

PC5 PC3 PCl
PC4 PC2 PCO

) Atme

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2

VCC PB6 PD5S PD7

AREF PB5 PB3 PBI

1 Mega8

GND PB7 PD6 PBO

NN EREREEEN
2 3 4 5 6 7

Juguuuuuu

I 8 10 11 12 13 14
| Vi
! MM—
+5V 200 ohm
S

Andrew H. Fagg: Embedded
Systems: Atmel Basics

12

Common Special-Purpose
Registers

Program counter
Status register
Instruction register
Stack pointer

Peripheral control is all done through
registers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

13

Atmel Mega8

8-bit data bu

 Primary
mechanism
for data
exchange

Data Bus 8-bit

Program Status
Flash - Ea
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General
Register Purpose SP
Registrers Unit
3
Instruction Watchdog
Decoder - Timer
(=] =
= ‘B
W w
l 8 £ Analog
Control Lines = pe. Comparator
= 3
[o
@ =
= =
= = i/O Module1
i'O Module 2
i'O Module n
EEPROM
I/O Lines
14

Andrew H. Fagg: Embedded

Systems: Atmel Basics

Atmel Mega8
«

32 general
purpose
registers

e 8 bits wide

e 3 pairs of
registers can
be combined
to give us 16
bit registers

Data Bus 8-bit

:

Program

Flash ¥ Baihtar

Program

Memory

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose
Registrers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

15

Atmel Mega8
«

Special
purpose
registers

Program
Counter

Instruction
Register

Data Bus 8-bit

Status
and Control

Instruction
Decoder

e Control of the
Internals of
the
processor

Andrew H. Fagg: Embedded

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Systems: Atmel Basics

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

16

Atmel Mega8
«

Random Access
Memory (RAM)
1 KByte In size

e Globals, heap
and stack are
stored here

Data Bus 8-bit

:

Andrew H. Fagg: Embedded

Systems: Atmel Basics

Interrupt
Unit

SPI
Unit

Program Status
PEZ?Q » n Counter ol and Control
Memory =
l 32x8
Instruction General
Register Purpose
o Registrers
= y h 4
< N
w
3 ALU
5 =
Control Lines Z
3
3

1/O Lines i

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

19

Atmel Mega8
«

Flash (EEPROM

 Program
storage

8 KByte In size
e 16 bit words

Data Bus 8-bit

:

Flash
Program
Memory

Program
Counter

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded

Systems: Atmel Basics

Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
» /O Module n
EEPROM ol
I/O Lines g —i
20

Atmel Mega8
«

EEPROM

e Permanent
data storage

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

:

Instruction
Register

3

Instruction
Decoder

Andrew H. Fagg: Embedded

Direct Addressing

Systems: Atmel Basics

Indirect Addressing

Status
and Control
— Interrupt
A Unit
General
Purpose -=h SP
Registrers v Unit
Watchdog
4 \ y = Timer
ALU = Analog
Comparator
®| /O Module1
sﬁiﬂ e /0 Module 2
e
» /O Module n
I/O Lines g —i
21

Atmel Mega8
«

Arithmetic
Logical Unit

e Data Inputs
from registers

e Control inputs
not shown
(derived from
Instruction
decoder)

Data Bus 8-bit

Program
Counter

Memory =

and Control

Status

Instruction
Decoder

l

Control Lines

Direct Addressin

Indirect Addressi

Andrew H. Fagg: Embedded
Systems: Atmel Basics

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

/O Module 2

Y

i/O Module n

22

Processors in the Atmel Family

 Memory/program size
e Different numbers and types of I/O pins

e Custom support for other communication
protocols (e.g., CANbus)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

23

Instruction Fetch/Execution Cycle

T1 T2 T3 T4

ok —4 N/ _J _ /)

CPU
1st Instruction Fetch —<

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

N \

___._____;<_;;__ ___

From Atmel Mega8 spec

« While one instruction is being executed, the next is
already being fetched from memory

* In many cases: each step happens on a single clock
cycle

Andrew H. Fagg: Embedded 24
Systems: Atmel Basics

Instruction Execution Cycle

T1 T2 T3 T4
|
[
[
|

AP A N A N A N A N

CPU

| | |
| 1 |
| | |
| 1 1
| | | |
Total Execution Time ——X > : :
| | 1 |
Register Operands Fetch : : : :
| | | |
ALU Operation Execute 4 e : :
| | | |
_ | — I |
Result Write Back . .
I _:‘/ 1 I
| 1 |

Address the registers and walit for the values
to become avallable

Andrew H. Fagg: Embedded 25
Systems: Atmel Basics

Instruction Execution Cycle

T1 T2 T3 T4

clkcpy ,
Total Execution Time ——K

|
Register Operands Fetch — >

|
ALU Operation Execute : O
|
i |
Result Write Back i <)
u | | /—"\,

Perform the operation dictated by the
Instruction

Andrew H. Fagg: Embedded 26
Systems: Atmel Basics

Instruction Execution Cycle

T1 T2 T3 T4

clkcpy
Total Execution Time ——X

N
4

Register Operands Fetch — >

ALU Operation Execute

|
|
|
|
|
T
|
|
|
|
N~/ !
|

Result Write Back 4 >

7 T
Result stored in destination register
Status register state changed

Andrew H. Fagg: Embedded 27
Systems: Atmel Basics

Data Bus 8-bit

Atmel Mega8
«

:

= Flash -t Fg;:g:ﬂaen: nl anciS tgi:unir B i
Control the pins i o :
through th ‘ =
roug € o gororal food =
< Registrers - Unit
/O modules
Decoder - 4 Y *™ Timer
e At the heart, ' | | wo N
Control Lines § Z Comparator
3 g N\
these are -
- 2D
- N 7
registers
—pgt— /O Module 2

» SRAM

that are » /O Module n
|mp|emented EEPROM |a—m
using D flip- T, |

ﬂOpSl Andrew H. Fagg: Embedded 28
Systems: Atmel Basics

/O Pin Implementation

Single bit of
PORT B

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

The physical
pIN

A

Bll| (=

l DDRXx
& QD leg

RESET
1!'
3 N
L
PORTX
- rd! > PN o D O
\l PORTxn
T, 4
| _|— WPx
RESET
N
|
PINX L RPx
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

DDRB \b’
e Defines

whether
this Is an

Pxn

—<

(==

Input or an
output

JA

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:
RDx:

X
RRBx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS

/O Pin Implementation

PORTB

e Defines the
value that
IS written _
out to the
pin (If It IS
an output) PINX

11— (= l

<1
4

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

Tristate buffer
« When this
pin is an

output pin, It

allows the

Bll|

(==

|

PORTB flip-

flop to drive
the pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS

/O Pin Implementation

Input tri-state

buffer

Pxn

A

Bll|

(==

RRx

RPx

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS

/O Pin Implementation

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

DDRB

/O Pin Implementation

0

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

DDRB =

e “0” Is written to
the data bus

0

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
L
PORTX
& . rd! > PN o D
\l PORTxn ‘
T, 4
| _|— WPx
RESET
N
|
PINX ——— e
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

0

DATA BUS

/O Pin Implementation 0

DDRB = 0: [=1

AA A
LA A J

e “0” Is written to
the data bus

* This is input to '
the DDRB regqister

%
[
&
Z\
L.
®
@
o
=]

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DDRB =

e “0” Is written to
the data bus
 This is input to
the DDRB regqister
« WDB is clocked
from high to low

0

AA A
LA A J

Bll|

(==

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

/O Pin Implementation

DDRB = O;

e “0” Is written to the

AA A
LA A J

Bll|

(==

l . 0 DDRX

data bus

 This is input to the
DDRB register

* WDB is clocked from
high to low

» “0” is stored by the
flip-flop

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

/O Pin Implementation 0

DDRB = O; =i | .0 porx

:E r RDx
* “0” Is written to the data 0 v @
bus o} ——a— < ¢ g <
e This is input to the 2§ E
DDRB register RESET
« WDB is clocked from N
high to low P
« “0” is stored by flip-flop PINX O
» Which turns off the tri- L

state buffer

clk o

-> this is an input pin

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

< (= l -

0 DDRX
Q D 4'

DDRB = 1;

DDxn

T, 4
| _|— WDx

RESET

AA A
LA A J

e “1” Is written to the
data bus

A=
@)
A
_|
X

2
DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

DDRB = 1;

e “1” Is written to the

AA A
LA A J

Bll|

(==

l . 1 DDRX

Bl

data bus

 This is input to the
DDRB register
 WDB is clocked from
high to low

» “1” is stored by flip-flop
* Which turns on the tri-
state buffer

-> this is an output pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

1

DATA BUS

PORTB

/O Pin Implementation

A

:1;

Pxn

1 (=
l 1 DDRX
& a D <
DDxn
GU.H <
| _|_ WDx
RESET
>
3 N S
1 -
PORTX
4'4 o D
¢ t \l ¢ 1 1 PORTxn ‘
T, 4
| _|— WPx
RESET
N
L~
PINX ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation 1

PORTB = 1: [=1

AA A
LA A J

e “1” Is written to the
data bus

 This is input to the
PORTB register

A ym

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

PORTB = 1: [=1

AA A
LA A J

A ym

* “1” is written to the | .
data bus - 1
 This is input to the
PORTB register
 WPB is clocked from
high to low PINX
» “1” is stored by flip-flop

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

PORTB =

e “1” Is written to the

1;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “1” is stored by flip-flop

* Which provides a “1”
the tri-state buffer

-> output a “1”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— 1 <J & ® 4 <
1 1 2
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation 0

PORTB =

e “0” Is written to the
data bus

AA A
LA A J

Bll|

(==

A ym

o)
B
< o
o> 1 “J o \ 4 = ﬂ:
1 1, 5
a
RESET
PINX T
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation 0

PORTB =

e “0" Is written to the

O;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “0” is stored by flip-flop

* Which provides a “0”
the tri-state buffer

-> output a “0”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— O <J & ® 4 <
0 ol =
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

foo

/O Pin Implementation

PORTB;

A

AA A
LA A J

PUD

Bll|

(==

l 1 DDRXx
& QD leg

A ym

DDxn

T, 4
| _|— WDx

RESET

Pxn

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS

/O Pin Implementation

foo = PORTB: [=1

AA A
LA A J

. . 1 3

* RPB is set high — | = | - o
\l PORTxn ﬂ:

0 0 0= - %

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

foo = PORTB: [=1

AA A
LA A J

o)

 RPB is clocked from— | ,J{ | . @
. o~ <
high to low 0 0 =
« “0” is written to the 3

data bus

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DDRB = O;

* “0” Is written to the data
t)LJS; Pxn

AA A
LA A J

Bll|

(==

 This is input to the
DDRB register

 WDB is clocked from
high to low

» “0” is stored by flip-flop
e Which turns off the tri-
state buffer

-> this is an input pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

foo

/O Pin Implementation

A

PINB;

Pxn

11— (=
l 0 DDRX
& a D <
DDxn
Gu.n <
| _|_ WDx
RESET
>
E: h RDx
0 -
L PORTX
< a D
¢ \IO ¢ 1 O PORTxn ‘
UU.H <
| _|— WPx
RESET
N
L~
PINX ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

foo = PINB: [=1

AA A
LA A J

o)

* RPB is set high - | JQ. | L 3
N PORTxn {

O O O, 4 g

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DATA BUS

:“ <l| (} PUD
foo = PINB; | O porex
b & 0 D |g
T, %
| _|—WDX
RESET
< RDx
3 N —
O L
* RPB is clocked from—)5 | e ORTX
- \l PORTxn
high to low 0 Ol <
e The pin state is e L we
copied to the data bus g
L
PINX Px
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

Bit Manipulation

PORTB Is a register

« Controls the value that is output by the set
of port B pins

e But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded 57
Systems: Atmel Basics

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded
Systems: Atmel Basics

58

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

59

Bit-Wise Operators

01011110 A
10011011 B
? C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

60

Bit-Wise Operators

o

0101111 A
1001101\%/ B
C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

61

Bit-Wise Operators

0101111® A
1001101\1/ B

v

0 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

62

Bit-Wise Operators

010111ﬁb A

100110

il B

y
f

0 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

63

Bit-Wise Operators

01011110 A
10011011 B
00011010 C=A&B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

64

Bit-Wise Operators

Other Operators:
e OR: |
e XOR: A

Andrew H. Fagg: Embedded
Systems: Atmel Basics

65

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Andrew H. Fagg: Embedded
Systems: Atmel Basics

66

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A 4:

Andrew H. Fagg: Embedded
Systems: Atmel Basics

67

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 07

Andrew H. Fagg: Embedded
Systems: Atmel Basics

68

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A = A & OxXFB;

A &= ~4:

Andrew H. Fagg: Embedded
Systems: Atmel Basics

69

A First
Program

Flash the
LEDs at a
regular
Interval

e How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PCh PCH BCL GND

PC4 PC2

PDO PD2
PC6 PD1 PD3

VCC

PCO AREF PB5
) Atmel Mega8

PD4 GND PB7

AVCC PB4 PB2
PB3 PBI

PD6 PBO
PB6 PD5 PD7

1 4 5 o6 7

LJJ)_ISUI_IUI_ILJL

LD L L L
9 10 1T 12 13 14

200 ohm

Andrew Jr

~ o~

Systems: Atmel Basics

A First
Program

How do we
flash the LED
at a regular
Interval?

* We toggle the
state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 77 8 9 10 11 12 13 14
LT
YW * ¥
* W
+5V 200 ohm
Andrew o

~ o~

Systems: Atmel Basics

/O Pin Implementation

Single bit of
PORT B

Pxn

A

<< (=
l DDRx
& a D <
DDxn
Gl;l.fl <
| _|_ WDx
RESET
1.
3 L
L~
PORTX
= 1 o D
¢ \l ¢ 1 PORTxn
UU.H <
| _|— WPx
RESET
2 SLEEP r RRx
V’
SYNCHRONIZER
—_—_— RPx
I D« 0 Q _I_V
I PINxn I
I |— L T [> [+] I PINX
I_ ————— _: clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRx: READ PORTx REGISTER

RPx:

READ PORTx PIN

DATA BUS

A First Program

main() {
DDRB = Ox1; // Pin 0O to output
while(1) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec
+

Andrew H. Fagg: Embedded
Systems: Atmel Basics

76

A Second Program

main() {
DDRB = 0x3; // Set all port B pins as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec

PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);
PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);

What does this program do?

Andrew H. Fagg: Embedded 77
Systems: Atmel Basics

A Second Program

main() {

DDRB = OxFF; // Set all port B pins as outputs

while(l) {

PORTB = PORTB ™ 0Ox1;

delay ms(500);

PORTB = PORTB ™ 0x2;

delay ms(250);

PORTB = PORTB ™ Ox2;

delay ms(250);

// XOR bit O with 1
// Pause for 500 msec
// XOR bit 1 with 1

// XOR bit 1 with 1

Flashes LED on PB1 at 1 Hz
on PBO: 0.5 Hz

Andrew H. Fagg: Embedded 78
Systems: Atmel Basics

More Bit Masking

e Suppose we have a 3-bit number (so
values 0 ... 7)

e Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

 How do we express this in code?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

79

Bit Masking

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

uint8 t val; // A short is 8-bits wide
val = command_to_ robot; // A value between 0 and 7
PORTB = (PORTB & ~0x38) // Set the current B3-B5 to Os

| ((val & 0Ox7)<<3); // OR with new values (shifted
// to fit within B3-B5

Andrew H. Fagg: Embedded 80
Systems: Atmel Basics

Reading the Digital State of Pins

Given: we want to read the state of PB6 and

OW C
OW C

OW C

PB7 and obtain avalue of 0 ... 3

0 we configure the port?
0 we read the pins?
o0 we translate their values into an

integer of 0 .. 37

Andrew H. Fagg: Embedded 85
Systems: Atmel Basics

Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide
val = PINB;

outval = (val & 0xC0O) >> 6;
+

Andrew H. Fagg: Embedded 86
Systems: Atmel Basics

Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional | Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

Andrew H. Fagg: Embedded
Systems: Atmel Basics

A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O = O; // Set bit O to O

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OXFE;

or

PORTA &= ~1;

or

PORTA = PORTA & ~1;

Andrew H. Fagg: Embedded 93
Systems: Atmel Basics

Putting It All Together

 Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

 Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
It from your circuit

Andrew H. Fagg: Embedded
Systems: Atmel Basics

94

