
Andrew H. Fagg: Embedded
Systems: Atmel Basics

3

Atmel Mega8 Basics

• Complete, stand-
alone computer

• Ours is a 28-pin
package

• Most pins:
– Are used for

input/output
– How they are used

is configurable

Andrew H. Fagg: Embedded
Systems: Atmel Basics

4

Key Features
• Up to 16 MIPS (single cycle for most instructions)
• ~23 digital pins: configurable as inputs or outputs
• 6 channel, 10-bit analog-to-digital converter
• Serial communication support: RS232, SPI, I2C
• 3 counter/timers (2 8-bit; 1 16-bit)
• Internal/external interrupt support
• Brown-out detection
• Internal oscillator (1 MHz)
• Bootloader support
• Sleep mode
• Watchdog timer

Andrew H. Fagg: Embedded
Systems: Atmel Basics

5

Interrupt Sources

• External pins: state change; falling/rising
edge

• Timer/counters: when counter overflows
• Communication peripherals
• Brown out
• Analog to digital conversion complete

Andrew H. Fagg: Embedded
Systems: Atmel Basics

6

Atmel Mega8 Basics

Power (we will use
+5V)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

7

Atmel Mega8 Basics

Ground

Andrew H. Fagg: Embedded
Systems: Atmel Basics

8

Atmel Mega8 Basics

Reset
• Bring low to reset

the processor
• In general, we will

tie this pin to high
through a pull-up
resistor (10K ohm)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

9

Atmel Mega8 Basics

PORT B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

10

Atmel Mega8 Basics

PORT C

Andrew H. Fagg: Embedded
Systems: Atmel Basics

11

Atmel Mega8 Basics

PORT D
(all 8 bits are

available)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

12

A First
Circuit

Andrew H. Fagg: Embedded
Systems: Atmel Basics

13

Common Special-Purpose
Registers

• Program counter
• Status register
• Instruction register
• Stack pointer
• Peripheral control is all done through

registers

Andrew H. Fagg: Embedded
Systems: Atmel Basics

14

Atmel Mega8

8-bit data bus
• Primary

mechanism
for data
exchange

Andrew H. Fagg: Embedded
Systems: Atmel Basics

15

32 general
purpose
registers

• 8 bits wide
• 3 pairs of

registers can
be combined
to give us 16
bit registers

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

16

Special
purpose
registers

• Control of the
internals of
the
processor

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

19

Random Access
Memory (RAM)

• 1 KByte in size
• Globals, heap

and stack are
stored here

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

20

Flash (EEPROM)
• Program

storage
• 8 KByte in size
• 16 bit words

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

21

EEPROM
• Permanent

data storage

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

22

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega8

Andrew H. Fagg: Embedded
Systems: Atmel Basics

23

Processors in the Atmel Family

• Memory/program size
• Different numbers and types of I/O pins
• Custom support for other communication

protocols (e.g., CANbus)

Andrew H. Fagg: Embedded
Systems: Atmel Basics

24

Instruction Fetch/Execution Cycle

• While one instruction is being executed, the next is
already being fetched from memory

• In many cases: each step happens on a single clock
cycle

From Atmel Mega8 spec

Andrew H. Fagg: Embedded
Systems: Atmel Basics

25

Instruction Execution Cycle

Address the registers and wait for the values
to become available

Andrew H. Fagg: Embedded
Systems: Atmel Basics

26

Instruction Execution Cycle

Perform the operation dictated by the
instruction

Andrew H. Fagg: Embedded
Systems: Atmel Basics

27

Instruction Execution Cycle

Result stored in destination register
Status register state changed

Andrew H. Fagg: Embedded
Systems: Atmel Basics

28

Atmel Mega8

Control the pins
through the
I/O modules

• At the heart,
these are
registers …
that are
implemented
using D flip-
flops!

Andrew H. Fagg: Embedded
Systems: Atmel Basics

29

I/O Pin Implementation

Single bit of
PORT B

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

30

I/O Pin Implementation

The physical
pin

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

31

I/O Pin Implementation

DDRB
• Defines

whether
this is an
input or an
output

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

32

I/O Pin Implementation

PORTB
• Defines the

value that
is written
out to the
pin (if it is
an output)

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

33

I/O Pin Implementation

Tristate buffer
• When this

pin is an
output pin, it
allows the
PORTB flip-
flop to drive
the pin

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

34

I/O Pin Implementation

Input tri-state
buffer

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

35

I/O Pin Implementation

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

36

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

37

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus

Andrew H. Fagg: Embedded
Systems: Atmel Basics

38

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus
• This is input to
the DDRB register

Andrew H. Fagg: Embedded
Systems: Atmel Basics

39

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus
• This is input to
the DDRB register
• WDB is clocked
from high to low

Andrew H. Fagg: Embedded
Systems: Atmel Basics

40

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the
data bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by the
flip-flop

0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

41

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the data
bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by flip-flop
• Which turns off the tri-
state buffer

-> this is an input pin

0

0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

42

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 1;

1

• “1” is written to the
data bus

0

0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

43

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 1;

1

• “1” is written to the
data bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “1” is stored by flip-flop
• Which turns on the tri-
state buffer

-> this is an output pin

1

1

Andrew H. Fagg: Embedded
Systems: Atmel Basics

44

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

•

1

1
1

Andrew H. Fagg: Embedded
Systems: Atmel Basics

45

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register

1

1

Andrew H. Fagg: Embedded
Systems: Atmel Basics

46

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “1” is stored by flip-flop

1

1
1

Andrew H. Fagg: Embedded
Systems: Atmel Basics

47

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “1” is stored by flip-flop
• Which provides a “1” to
the tri-state buffer

-> output a “1”

1

1
111

Andrew H. Fagg: Embedded
Systems: Atmel Basics

48

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 0;

0

• “0” is written to the
data bus

1

1
111

Andrew H. Fagg: Embedded
Systems: Atmel Basics

49

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 0;

0

• “0” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “0” is stored by flip-flop
• Which provides a “0” to
the tri-state buffer

-> output a “0”

1

1
000

Andrew H. Fagg: Embedded
Systems: Atmel Basics

50

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB; 1

1
000

Andrew H. Fagg: Embedded
Systems: Atmel Basics

51

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB;

• RPB is set high

1

1
000

Andrew H. Fagg: Embedded
Systems: Atmel Basics

52

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB;

• RPB is clocked from
high to low
• “0” is written to the
data bus

1

1
000

0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

53

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the data
bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by flip-flop
• Which turns off the tri-
state buffer

-> this is an input pin

0

0
00

Andrew H. Fagg: Embedded
Systems: Atmel Basics

54

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB; 0

0
00

Andrew H. Fagg: Embedded
Systems: Atmel Basics

55

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB;

• RPB is set high

0

0
00

Andrew H. Fagg: Embedded
Systems: Atmel Basics

56

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB;

• RPB is clocked from
high to low
• The pin state is
copied to the data bus

0

0
00

Andrew H. Fagg: Embedded
Systems: Atmel Basics

57

Bit Manipulation

PORTB is a register
• Controls the value that is output by the set

of port B pins
• But – all of the pins are controlled by this

single register (which is 8 bits wide)

• In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded
Systems: Atmel Basics

58

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded
Systems: Atmel Basics

59

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

60

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

61

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

62

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

63

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

64

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Andrew H. Fagg: Embedded
Systems: Atmel Basics

65

Bit-Wise Operators

Other Operators:
• OR: |
• XOR: ^

Andrew H. Fagg: Embedded
Systems: Atmel Basics

66

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

67

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A | 4;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

68

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 0?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

69

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A & 0xFB;

A &= ~4;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

73

A First
Program

Flash the
LEDs at a
regular
interval

• How do we
do this?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

74

A First
Program

How do we
flash the LED
at a regular
interval?

• We toggle the
state of PB0

Andrew H. Fagg: Embedded
Systems: Atmel Basics

75

I/O Pin Implementation

Single bit of
PORT B

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded
Systems: Atmel Basics

76

A First Program
main() {

DDRB = 0x1; // Pin 0 to output

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

77

A Second Program
main() {

DDRB = 0x3; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

78

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PB1 at 1 Hz
on PB0: 0.5 Hz

Andrew H. Fagg: Embedded
Systems: Atmel Basics

79

More Bit Masking

• Suppose we have a 3-bit number (so
values 0 … 7)

• Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

• How do we express this in code?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

80

Bit Masking
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs

:
:

uint8_t val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & ~0x38) // Set the current B3-B5 to 0s
| ((val & 0x7)<<3); // OR with new values (shifted

// to fit within B3-B5
}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

85

Reading the Digital State of Pins

Given: we want to read the state of PB6 and
PB7 and obtain a value of 0 … 3

• How do we configure the port?
• How do we read the pins?
• How do we translate their values into an

integer of 0 .. 3?

Andrew H. Fagg: Embedded
Systems: Atmel Basics

86

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Andrew H. Fagg: Embedded
Systems: Atmel Basics

92

Port-Related Registers

The set of C-accessible register for controlling
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional
control

Andrew H. Fagg: Embedded
Systems: Atmel Basics

93

A Note About the C/Atmel Book
The book uses C syntax that looks like this:
PORTA.0 = 0; // Set bit 0 to 0

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= 0xFE;

or
PORTA &= ~1;

or
PORTA = PORTA & ~1;

Andrew H. Fagg: Embedded
Systems: Atmel Basics

94

Putting It All Together

• Program development:
– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and

other tools) to generate code on your laptop
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will

be able to program the chip without removing
it from your circuit

