
Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal
• Serial signals
• Analog

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

• Spatial resolution: ~.5
degrees, 1 cm

• Can handle full 180 degrees
at 20 Hz

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

sides do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that data
is coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices
– Software solutions in libraries

Frame-Level Error Detection

• Due to timing and noise problems, the
receiver may not receive the correct data

• We would like to catch these errors as
early in the process as possible

• The first line of defense: include extra bits
in the data frame that can be used for error
detection and/or correction
– This can also be done by our UART

Frame-Level Error Detection
Parity bit: indicates whether there is an

odd or even number of 0s in the byte
• Transmitter computes the parity bit and

includes it in the data frame
• Receiver also computes parity of the

received byte
• If the two do not match, then an error is

raised
– How the error is dealt with is determined by

the meta-level protocol

Frame-Level Error Correction

• When we use a single parity bit, we
assume that in the worst case, a single bit
is corrupted

• But: we can be more sophisticated about
catching errors if we transmit more bits (at
the cost of a larger data frame)

• Instead, we tend to do these types of
checks on a set of bytes: “checksum”s

One Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -

15 (-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

• Handles all of the bit-level manipulation
• You only have to interact with it on the

byte level

But: “Low” is 0v and “High” is +5V

Mega8
UART

Mega8
UART

• Transmit pin
(PD1)

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Mega8
UART

• Receive pin
(PD0)

Mega8
UART

• Receive pin
(PD0)

• Receive
shift register

Mega8 UART C Interface
Lib C support (standard C):
getchar(): receive a character

putchar(’a’): put a character out to the port

puts(”foobar”): put a string out to the port

printf(”foobar %d %s”, 45, ”baz”): put a
formatted string out to the port (not recommended
for the atmels)

Mega8 UART C Interface
OUlib support:
fp = serial_init_buffered(0, 9600, 10, 10)

Initialize the port @9600 bits per second (input and output
buffers are both 10 characters long)

serial_buffered_input_waiting(fp)
Is there a character in the buffer?

See the Atmel HOWTO: examples/serial

Summary: Using OUlib + LibC
• At the top of your source file:
#include "oulib_serial_buffered.h“

• Initialization (in your main() function):
fp = serial_init_buffered(0, 9600, 10, 10)

sei();

• Getting a character:
char c;
C = getchar();

• Sending a character:
putchar(’f’);

Mega8
UART ‘c’

putchar(‘c’)

Mega8
UART ‘c’

putchar(‘c’)
• ‘c’ placed onto the

data bus and
written to UDR

Mega8
UART ‘c’

putchar(‘c’)
• ‘c’ placed onto the

data bus and
written to UDR

• When TSR is
ready, ‘c’ is copied
from UDR to TSR

Mega8
UART ‘c’

putchar(‘c’)
• ‘c’ placed onto the

data bus and
written to UDR

• When TSR is
ready, ‘c’ is copied
from UDR to TSR

• TSR shifts bits out
to pin sequentially

Mega8 UART C Interface

printf(): formatted output
scanf(): formatted input

See the LibC documentation or the AVR C
textbook

I/O By Polling

Polling works great … but:

I/O By Polling

Polling works great … but:
• We have to guarantee that our other tasks

do not take too long (otherwise, we may
miss the event)

• Depending on the device, “too long” may
be very short

Serial I/O by Polling

With this solution, how long can “something else” take?

int c;
while(1) {
if(kbhit()) {

// A character is available for reading
c = getchar();
<do something with the character>

}
<do something else while waiting>

}

I/O by Polling

In practice, we typically reserve this polling
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are measured in nano- to micro-
seconds)

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

• The UART implements a 1-byte buffer
• Let’s create a larger buffer…

Receiving Serial Data

Creating a larger (circular) buffer. This will be a
globally-defined data structure composed of:

• N-byte memory space:
volatile uint8_t buffer[BUF_SIZE];

• Integers that indicate the first element in the
buffer and the number of elements:
volatile uint8_t front, nchars;

Buffered Serial Data

Implementation:
• We will use an interrupt routine to transfer

characters from the UART to the buffer as
they become available

• Then, our main() function can remove the
characters from the buffer

Interrupt Handler
// Called when the UART receives a byte
ISR(USART_RXC_vect) {
// Handle the character in the UART buffer
c = getchar();

}
}

Interrupt Handler
// Called when the UART receives a byte
ISR(USART_RXC_vect) {
// Handle the character in the UART buffer
int c = getchar();

if(nchars < BUF_SIZE) {
buffer[(front+nchars)%BUF_SIZE] = c;
nchars += 1;

}
}

Reading Out Characters
// Called by a “main” program
// Get the next character from
the circular buffer

int16_t get_next_character() {
int16_t c;

return(c);
}

Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

int c;
if(nchars == 0)

return(-1); // Error
else {

// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;
front = (front + 1)%BUF_SIZE;
return(c);

}
}

An Updated main()
int c;
while(1) {
do {

c = get_next_character();
if(c != -1)

<do something with the character>
}while(c != -1);

<do something else while waiting>

}

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ….

Buffered Serial Data

Subtle issues:
• The reading side of the code must make

sure that it does not allow the buffer to
overflow
– But at least we have BUF_SIZE times more

time before this happens
• We also have a shared data problem …

The Shared Data Problem

• Two independent segments of code that
could access the same data structure at
arbitrary times

• In our case, get_next_character() could be
interrupted while it is manipulating the
buffer
– This can be very bad

Solving the Shared Data Problem

• There are segments of code that we want
to execute without being interrupted

• We call these code segments critical
sections

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts

Disabling Interrupts

• How can we modify get_next_character()?

• It is important that the critical section be as short
as possible

Assume:
• serial_receive_enable(): enable interrupt flag
• serial_receive_disable(): clear (disable) interrupt

flag

Modified get_next_character()
int get_next_character() {

int c;
serial_receive_disable();
if(nchars == 0)

serial_receive_enable();
return(-1); // Error

else {
// Pull out the next character
c = buffer[front];
--nchars;
front = (front + 1)%BUF_SIZE;
serial_receive_enable();
return(c);

}
}

Initialization Details
main()
{
serial0_init(9600);
nchars = 0;
front = 0;

// Enable UART receive interrupt
serial_receive_enable();

// Enable global interrupts
sei();

:

Enable/Disable Serial Interrupt
One bit of UCSRB determines whether the

serial receive interrupt is enabled or
disabled. Here is the code:

inline void serial_receive_enable(void) {
UCSRB |= _BV(RXCIE); // Enable serial receive interrupt

}

inline void serial_receive_disable(void) {
UCSRB &= ~_BV(RXCIE); // Disable receive interrupt

}

Enabling/Disabling Interrupts

• Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted
– This allows for safe access to shared

variables

• But: must not disable interrupts for a very
long time

Alternative Solutions
• There is a clever change to the data

structure that does not require
enabling/disabling interrupts

• Also possible to put this buffer “behind”
getchar() (and hence all other input
functions)
– See serial0_init() in OUlib to see how the

hardware specific implementation is hooked
into the general LIBC functions

