Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
 Send commands to actuators
* Or both (e.qg., disks, audio, video devices)



/O Systems

Communication can happen in a variety of
ways:

* Binary parallel signal
e Serial signals
* Analog



An Example:
SICK Laser Range Finder

_aser IS scanned
norizontally

Jsing phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

Spatial resolution: ~.5
degrees, 1 cm

Can handle full 180 degrees
at 20 Hz




Serial Communication

« Communicate a set of bytes using a single
signal line

e \We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.



Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Typically, each side has a clock to tell it
when to write/read a bit

* In some cases, the sender will also send a
clock signal (on a separate line)

e |[n other cases, the sender/receiver will first
synchronize their clocks before transfer
begins



Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

e This reduces the number of signal lines

 Bidirectional transmission, but the two
sides do not need to be synchronized In
time

But: we still need some way to agree that
data is valid. How?



Asynchronous Serial

Communication
How can the two sides agree that the data Is
valid?
 Must both be operating at essentially the
same transmit/receive frequency

* A data byte Is prefaced with a bit of
iInformation that tells the receiver that data
IS coming

 The recelver uses the arrival time of this
start bit to synchronize its clock



A Typical Data Frame
01234567

start stop
hit bits

The stop bits allow the receiver to
iImmediately check whether this is a valid
frame

* |f not, the byte Is thrown away



Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

 Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
—Very common in computing devices
— Software solutions in libraries



Frame-Level Error Detection

* Due to timing and noise problems, the
receiver may not receive the correct data

 \We would like to catch these errors as
early in the process as possible

 The first line of defense: include extra bits
In the data frame that can be used for error
detection and/or correction
— This can also be done by our UART



Frame-Level Error Detection

Parity bit: indicates whether there iIs an
odd or even number of Os Iin the byte

e Transmitter computes the parity bit and
iIncludes it in the data frame

* Recelver also computes parity of the
received byte

e |f the two do not match, then an error Is
raised

— How the error is dealt with is determined by
the meta-level protocol



Frame-Level Error Correction

 When we use a single parity bit, we
assume that in the worst case, a single bit
IS corrupted

e But: we can be more sophisticated about
catching errors If we transmit more bits (at
the cost of a larger data frame)

* |Instead, we tend to do these types of
checks on a set of bytes: “checksum”s



One Standard: RS232-C

Defines a logic encoding standard:

* “High” Is encoded with a voltage of -5 to -
15 (-12 to -13V is typical)

* “Low” Is encoded with a voltage of 5 to 15
(12 to 13V is typical)



RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

 Handles all of the bit-level manipulation

* You only have to interact with it on the
byte level

But: “Low” Is Ov and “High” Is +5V



Megas
UART

DATABUS

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN
¥ ml CONTROL oK
________ ’7 T T T T T T T T T T T Transmiitter |
|
UDR (Transmit) CGT\]-'I;:(ROL |
* PARITY |
|" GENERATOR |
PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
———————————————————————— =
ecelver |
s clock RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
_—:D_. RECEIVE SHIFT REGISTER REE Db calitto: 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER |
|
UCSRA UCSRB UCSRC

{

¢

i




Megas
UART

e Transmit pin
(PD1)

UBRR[H:

L

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

TRANSMIT SHIFT

REGISTER

a CONTROL

DATABUS

|
|
|
|
|
|
|
-J-| XCK
|

TxD

¢

Receiver |

» clock RX |

RECOVERY CONTROL |

I—- I_ |
DATA PIN

_—:D_. RECEIVE SHIFT REGISTER 3 corso: 4J|— RxD

¥ |

PARITY |

UDR (Recahe}— CHECKER |

|

UCSRB UCSRC

i




UBRR[H:L]

¥

Megas
UART

0sC

BAUD RATE GENERATOR

|

|

|

|

|

|
| |
[Erecec]s— en L

Y | XCK
|

. ] g COMTROL
e Transmit PN
1 ’7 7777 Transmitter |
—_ X |
P D 1 UDR (Transmit) CONTROL |
* PARITY |
| y GENERATOR |
. ¢ PIN
TRANSMIT SHIFT REGISTER CONTROL — TxD
e |ransmi |
————————————————————— Receiver
[ ] [ ] |
shift reqister G S
RECOVERY CONTROL
I—' |_ DATA PIN
_—:D_. RECEIVE SHIFT REGISTER RECOVERY g} CONTROL RxD

PARITY
UDR (Raceive}— CHECKER [

e

UCSRB UCSRC

{ }




Megas
UART

UBRR[H:L]

¥

0sC

BAUD RATE GENERATOR

| |
| |
| |
| |
| |
| |
' |
| I

| : Gl ek
|

- |
|

] . g COMTROL
e Recelve PN
________ ;7 7777 Transmitter |
—_ X |
P D O UDR (Transmit) CONTROL |
* PARITY |
0 GENERATOR == |
=2 _I
o REGISTER CONTROL — TxD
<L
NV e——_ T L
g Receiver |
- cLOC RX |
RECOVERY CONTROL |
|

RxD

I—' DATA
_—:D_. RECEIVE SHIFT REGISTER RECOVERY g CONTROL

PARITY
UDR (Raceive}— CHECKER [

UCSRB UCSRC

{ }




Megas
UART
* Recelve pin
(PDO)

* Recelve
shift register

DATABUS

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

|
|
|
|
|
|
PIN "J|"
|

| sYNC LOGIC
¥ CONTROL ¥CK
_____ ‘7 T T T T T T T T T T T Transmiitter |
|
UDR (Transmit) COT\]-:ROL |
* PARITY |
|" GENERATOR |
PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
———————————————————————— .
eceiver |
s clock RX |
RECOVERY CONTROL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER REE Db calitto: 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER |
|
UCSRB UCSRC

i




Mega8 UART C Interface

Lib C support (standard C):
getchar(): receive a character

putchar(’a”): put a character out to the port
puts(”’foobar’) : put a string out to the port

printf(’foobar %d %s”, 45, ”baz”): puta
formatted string out to the port (not recommended
for the atmels)



Mega8 UART C Interface

OUlib support:
fp = serial_iInit buffered(O0, 9600, 10, 10)
Initialize the port @9600 bits per second (input and output

buffers are both 10 characters long)
serial _buffered 1nput warting(fp)
Is there a character in the buffer?

See the Atmel HOWTO: examples/serial



Summary: Using OUlib + LibC

* At the top of your source file:
#include "oulib_serial buffered.h*

e Initialization (in your main() function):
fp = serial_iInit buffered(O0, 9600, 10, 10)
sei();

e Getting a character:
char c;
C = getchar();

e Sending a character:
putchar(Cft”);



Megas
UART

putchar(‘c’)

‘C’

DATABUS

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN
¥ ml CONTROL oK
________ ’7 T T T T T T T T T T T Transmiitter |
|
UDR (Transmit) CGT\]-'I;:(ROL |
* PARITY |
|" GENERATOR |
PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
———————————————————————— =
ecelver |
s clock RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
_—:D_. RECEIVE SHIFT REGISTER REE Db calitto: 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER |
|
UCSRA UCSRB UCSRC

{

¢

i




Megas

UART °©

putchar(‘c’)
* ‘Cc’ placed onto the

data bus and
written to UDR

UBRR[H:

L

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

a| CONTROL

XCK

—_ X |
UDR (Transmit) CONTROL |
* PARITY |
GEMERATOR
0 PIN |
o ’
o TRANMSMIT SHIFT REGISTER CONTROL —P TxD
<
VT VlI— |
g Receiver |
i CLOCK RX |
RECOVERY CONTROL |
DATA PIN
_—:D_. RECEIVE SHIFT REGISTER RECOVERY CONTROL 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER |
|
UCSRE UCSRC

i




Megas
UART

putchar(‘c’)
* ‘Cc’ placed onto the

data bus and
written to UDR

« When TSR Is
ready, ‘C’ Is copied
from UDR to TSR

‘C’

UBRR[H:L]

¥

BAUD RATE GENERATOR

| sYNC LOGIC PIN
¥ ml CONTROL oK
________ # T T T T T 777 Transmitter |
|
UDR (Transmit) COT\T:ROL |
PARITY |
GENERATOR
w PIN |
- |
= TRANSMIT SHIFT REGISTER conTROL ™ ™0
<
ey T |
& Receiver |
M CLOCK L RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
_—:D_. RECEIVE SHIFT REGISTER RECOVERY ™ P 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER [ |
|

S S VO S P S P S S |




Megas
UART ¢

UBRR[H:L]

BAUD RATE GENERATOR %

a CONTROL

|

|

|

i
(L ¥ II SYNC LOGIC |-¢_ PIN -JL K
putchar(‘c’) :

________ # 7 Transmitter |

 ‘c’ placed onto the * L]
data bus and % ::D_$‘RANSR-1ITSHIFTREGSTER|% TxD

written to UDR 2 1 s i—— jaistias

e When TSR Is

ready, ‘C’ Is copied
from UDR to TSR

* TSR shifts bits out
to pin sequentially

PARITY
UDR (Raceive}— CHECKER [

|

|

I—- |_ |

DATA PIN
_—:D_. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD

¥ |

|

|

|

e Sy S — S S VO S P S P S S |




Mega8 UART C Interface

printf() : formatted output
scant () : formatted input

See the LIbC documentation or the AVR C
textbook



/O By Polling

Polling works great ... but:



/O By Polling

Polling works great ... but:

* \We have to guarantee that our other tasks

do not take too long (otherwise, we may
miss the event)

* Depending on the device, “too long” may
be very short



Serial I/0O by Polling
int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

With this solution, how long can “something else” take?



/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* \We know the event is coming very soon
 \We must respond to the event very quickly

(both are measured In nano- to Micro-
seconds)



Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?



Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
e Let's create a larger buffer...



Recelving Serial Data

Creating a larger (circular) buffer. This will be a
globally-defined data structure composed of:
* N-byte memory space:
volatile uint8 t buffer[BUF_SIZE];
* Integers that indicate the first element in the
buffer and the number of elements:
volatile uint8 t front, nchars;



Buffered Serial Data

Implementation:

 We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

 Then, our main() function can remove the
characters from the buffer



Interrupt Handler

// Called when the UART receilves a byte
ISR(USART_RXC vect) {
// Handle the character 1In the UART buffer
c = getchar();



Interrupt Handler

// Called when the UART receilves a byte
ISR(USART _RXC vect) {
// Handle the character 1n the UART buffer
iInt ¢ = getchar();

1f(nhchars < BUF_SIZE) {
buffer[ (front+nchars)%BUF SIZE] = c;
nchars += 1;



Reading Out Characters

// Called by a “main” program

// Get the next character from
the circular buffer

INtl6 _t get next character() {
INtlé t c;

return(c);

L



Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer
int get next _character() {
int c;
if(nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;

front = (front + 1)%BUF_SIZE;
return(c);



An Updated main()

Iint c;
while(1) {
do {
C = get_next_character();
if(c 1= -1)

<do something with the character>
Mwhile(c = -1);

<do something else while waiting>

}



Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ....



Buffered Serial Data

Subtle i1ssues:

 The reading side of the code must make
sure that it does not allow the buffer to
overflow

— But at least we have BUF_SIZE times more
time before this happens

 \WWe also have a shared data problem ...



The Shared Data Problem

 Two Independent segments of code that
could access the same data structure at
arbitrary times

* In our case, get _next_character() could be

iInterrupted while it Is manipulating the
buffer

— This can be very bad



Solving the Shared Data Problem

 There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections



Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

 Clever coding
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

 Disabling interrupts



Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

» Clevercoding «——
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

e Disabling interrupts «——



Disabling Interrupts

 How can we modify get_next _character()?

|t is iImportant that the critical section be as short
as possible

Assume:
e serial receive enable(): enable interrupt flag

« serial receive disable(): clear (disable) interrupt
flag



Modified get_next_character()

int get next_character() {

int c;

serial_receive disable();

1f(hchars == 0)
serial_receive _enable();
return(-1); // Error

else {
// Pull out the next character
c = buffer[front];
--nchars;
front = (front + 1)%BUF _SIZE;
serial_receive_enable();
return(c);



Initialization Detalls

main()

{
seri1alO_i1nit(9600);
nchars = 0;
front = O;

// Enable UART receive i1nterrupt
serial _receive enable();

// Enable global i1nterrupts
sel();



Enable/Disable Serial Interrupt

One bit of UCSRB determines whether the
serial receive interrupt is enabled or
disabled. Here is the code:

inline void serial _receive enable(void) {
UCSRB |= BV(RXCIE); // Enable serial receive interrupt

}

inline void serial _receive disable(void) {
UCSRB &= ~ BV(RXCIE); // Disable receive interrupt

}



Enabling/Disabling Interrupts

 Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

e But: must not disable interrupts for a very
long time



Alternative Solutions

 There Is a clever change to the data
structure that does not require
enabling/disabling interrupts

» Also possible to put this buffer “behind”
getchar() (and hence all other input
functions)

— See serial0_init() in OUlib to see how the

hardware specific implementation is hooked
into the general LIBC functions



