Counter/Timers In the Mega8

The mega8 incorporates three counter/timer
devices. These can:

 Be used to count the number of events
that have occurred (either external or
Internal)

e Act as a clock

e Trigger an interrupt after a specified
number of events

Andrew H. Fagg: Embedded
Systems: Timers

Timer O

e Possible input sources:
— Pin TO (PD4)
— System clock
 Potentially divided by a “prescaler”

e 8-bit counter

* \When the counter turns over from OxFF to
0x0, an interrupt can be generated

Andrew H. Fagg: Embedded
Systems: Timers

Timer 0 Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

e Clock input to 10-bit counter
e Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded
Systems: Timers

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

. 4
TO T TTTTTTTTTTTTA : L
ization |}

MUX selects between ____p t+vyse | l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded
Systems: Timers

Timer 0 Implementation

1o . 4 L > Cloar 10-BIT T/C PRESCALER

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

! g
MUX selects between fiilil] l
these different inputs __w o
» Control bits determine]
S O u r C e TIMER/COUNTERQ CLOCK SOURCE

clk.m

Andrew H. Fagg: Embedded
Systems: Timers

Timer 0 Implementation

clk,o $ D 10-BIT T/C PRESCALER

~
PSR10 2 S

&
>
&
TO §TTTTTTTTTTTTTTTR ¢
1 Synch i

MUX selects between
these different inputs

e 000: No Input

>l

Cs00
Cs01
cs02

Andrew H. Fagg: Embedded
Systems: Timers

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

10

Timer 0 Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

MUX selects between Pliveid l
these different inputs 223?3\»\

e 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 11
Systems: Timers

Timer 0 Implementation

Y
w
4
=
o b
CK/8

MUX selects between
these different inputs

e 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 12
Systems: Timers

Timer 0 Implementation

MUX selects between
these different inputs csot

cs02

e 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 13
Systems: Timers

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these l

Cs00

different inputs =
e 110: Falling edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 14
Systems: Timers

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

MUX selects between these
different inputs sl

e 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 15
Systems: Timers

DATA BUS

Timer O

» TCNTO: 8-bit

TCCRn

counter (a register)

J,

e TCCRO: control

y

Control Logic

Timer/Counter

TCNTR

&

= OxFF

& register

Andrew H. Fagg: Embedded 16

Systems: Timers

Timer O

e Clock source from

TCCRn

previous slide

J,

CIk‘Tn

9] Control Logic
o

< A

I—

S

y
Timer/Counter
TCNTn
= OxFF

Andrew H. Fagg: Embedded

Systems: Timers

17

DATA BUS

Timer O

e Increment counter
on every low-to-high
transition

Timer/Counter
TCNTn

Andrew H. Fagg: Embedded 18
Systems: Timers

Timer 0 Example

Suppose:
e 16MHz clock
e Prescaler of 1024

e \We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded
Systems: Timers

19

delay =

Timer 0 Example

10247155 _ 9948 18 ~10 ms
16,000,000

Systems: Timers

Timer 0 Example

Suppose:
e 16MHz clock
e Prescaler of 1024

e \We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded
Systems: Timers

25

delay =

Timer 0 Example

10247155 _ 9948 18 ~10 ms
16,000,000

Systems: Timers

Timer 0 Code Example

timerO_config(TIMERO_PRE _1024); // Prescale by 1024
timerO_set(0); /[Set the timerto O

// Do something else for a while
while(timerO_read() < 156) {
// Do something while waiting

¥

/I Break out at ~10 ms

See Atmel HOWTO for example code
(timer_demo2./€)z i

28

Cascade of Clock Divisors

* Prescalar (timer 0): 1, 8, 64, 256, 1024

e Timer O counter: up to 256

— In this case, our software waited for timer O to
achieve a particular value

e Other timers can choose their divisor
arbitrarily (more on this soon)

Andrew H. Fagg: Embedded 29
Systems: Timers

Timer 0 Example

Advantage over delay ms():
e Can do other things while waiting

e Timing Is much more precise

— We no longer rely on a specific number of
Instructions to be executed

— Interrupts do not interfere with the timing

Andrew H. Fagg: Embedded 30
Systems: Timers

Timer 0 Example

Disadvantage:

* “something else” cannot take very much
time

What is the solution?

Andrew H. Fagg: Embedded
Systems: Timers

31

Timer O Interrupt

What iIs the solution?
e Use Interrupts!

* \WWe can configure the timer to generate an
Interrupt every time the timer’s counter
rolls over from OxFF to Ox00

Andrew H. Fagg: Embedded 32
Systems: Timers

Timer 0 Example |

Suppose:
e 16MHz clock
e Prescaler of 1024

How often Is the interrupt generated?

Andrew H. Fagg: Embedded
Systems: Timers

33

Timer O Example Il

x
Interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded
Systems: Timers

34

Timer 0 Example |

How many counts do we need so that we
toggle the state of PBO every second?

counts = 1000 ms =61.0352

16.384 ms

We will assume 61 is close enough.

Andrew H. Fagg: Embedded
Systems: Timers

35

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO_OVF _vect) {

static uint8_t counter = 0;

++counter;

if(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB "= 1;
counter = 0O;

See Atmel HOWTO for example code
(t|mer_demo drew H. Fagg: Embedded

Systems: Timers

36

Example Il: Initialization

Il Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timerO_config(TIMERO _PRE_1024);

I/l Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

%

Andrew H. Fagg: Embedded
Systems: Timers

37

Timer O with Interrupts

This solution Is particularly nice:

» “something else” does not have to worry
about timing at all

— PBO state is altered asynchronously

 Note that we can have a shared data
problem (but not in this example)

Andrew H. Fagg: Embedded
Systems: Timers

38

Cascade of Clock Divisors

e Prescalar: 1to 1024

e Timer O counter: 256

— Other timers can choose their divisor
arbitrarily

o Software: arbitrary

Andrew H. Fagg: Embedded
Systems: Timers

39

Two Other Timers

Timer 1:
e 16 bit counter
e Prescalers: 1, 8, 64, 256, 1024

imer 2:
e 8 bit counter
e Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded
Systems: Timers

40

Interrupt Service Routines

e Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
« Communication with the main program
using global variables

Andrew H. Fagg: Embedded
Systems: Timers

47

Interrupts, Shared Data
and Compiler Optimizations

e Compilers (including ours) will often
optimize code In order to minimize
execution time

 These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded
Systems: Timers

48

Shared Data and Compiler
Optimizations

For example:
A=A+ 1;
C=B*A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded
Systems: Timers

49

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;
+

What does the compiler do with this?

Andrew H. Fagg: Embedded
Systems: Timers

50

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A iInto register 1
while(1l) {

PORTB = R1,;
+

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded 51
Systems: Timers

Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF_vect){
A = PIND;
by
 The global variable ‘A’ is being changed!
 The compiler has no way to anticipate this

Andrew H. Fagg: Embedded 52
Systems: Timers

Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This Is accomplished when we declare the
global variable:

volatile uint8 t A;

Andrew H. Fagg: Embedded 53
Systems: Timers

Information Encoding

Many different options for encoding
Information for transmission to/from other

devices:
 Parallel digital (e.qg., for our Project 1)
o Serial digital (e.g., USB, RS232)
 Analog: use voltage to encode a value

Andrew H. Fagg: Embedded
Systems: Timers

54

Information Encoding

An alternative: pulse-width modulation
(PWM)

e |[nformation is encoded in the time
netween the rising and falling edge of a
nulse

Andrew H. Fagg: Embedded 55
Systems: Timers

PWM Example:

RC Servo Motors

e 3 pins: power (red),
ground (black), and
command signal (white)

e Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded 56
Systems: Timers

PWM Example

20 ms
- >~

- >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

0.5 ms: O degrees

e 2.5 ms: 180 degrees

Andrew H. Fagg: Embedded 57
Systems: Timers

RC Servo Motors

 Internal potentiometer measures the
current orientation of the shatft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

 Mechanical stops limit the range of motion

— These stops can be removed for unlimited
rotation

Andrew H. Fagg: Embedded 58
Systems: Timers

PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded
Systems: Timers

59

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

 They are linearly related (essentially)

Andrew H. Fagg: Embedded 60
Systems: Timers

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded 61
Systems: Timers

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

e Again: they are linearly related (essentially)

 |If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded 62
Systems: Timers

Controlling LED Brightness

We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded 63
Systems: Timers

Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter

e \When the counter is O, turn the LED on

 WWhen the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded 65
Systems: Timers

volatile uiInt8 t duration = O;

ISR(TIMERO OVF vect)
{

static uiInt8 t counter = 0O;

Andrew H. Fagg: Embedded
Systems: Timers

66

volatile uiInt8 t duration = O;

ISR(TIMERO OVF vect)

¢ static uiInt8 t counter = O;
1T(counter == 0) PORTB |= 1;
1f(counter >= duration) PORTB &= ~1;
++counter;

by

Andrew H. Fagg: Embedded
Systems: Timers

67

Initialization Detalls

e Set up timer
* Enable interrupts

e Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded
Systems: Timers

70

Initialization

int main(void) {
DDRB = OxFF;
PORTB = 0;

/I Initialize counter
duration = O;

Il Interrupt configuration
timer0O_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0O_enable();

// Enable global interrupts

sel();

Andrew H. Fagg: Embedded
Systems: Timers

71

PWM Implementation

What is the resolution (how long is one
iIncrement of “duration™)?

Andrew H. Fagg: Embedded
Systems: Timers

12

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timerO counter (8 bits) expires every 256
clock cycles

250

t =
16000000

=16 1S
(assuming a 16MHz clock)

Andrew H. Fagg: Embedded 73
Systems: Timers

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded
Systems: Timers

74

PWM Implementation

What is the period of the pulse?

* The 8-bit counter (of the interrupt) expires every
256 Interrupts

. _ 256*256

= =4.096 ms
16000000

Andrew H. Fagg: Embedded 75
Systems: Timers

Doing “Something Else”

unsigned Int 1;
while(1l) {
for(hn = 0; 1 < 256; ++1)
duration = 1;
delay ms(50);

Andrew H. Fagg: Embedded
Systems: Timers

76

Timer 1

e 16 bit counter
— All the same functionality as we see with timer O

 One input capture unit

— On an external event, save the state of the
counter

« Two output compare units

— Generate an event when the counter reaches a
certain state (e.g., we can use this to do PWM
In hardware!)

Andrew H. Fagg: Embedded 77
Systems: Timers

Timer 1

e There are comparable functions in oulib
(to timer0)

 There are also functions that give you
access to the output compare and input
capture functionality

 Note: many timer 1 registers are 16 bit
registers. Accesses to these must be
thread safe (oulib provides this for you)

Andrew H. Fagg: Embedded
Systems: Timers

78

Timer 2

e 8-bit counter
e Output-compare

« \Waveform generator
— S0: can also generate PWM signals

Andrew H. Fagg: Embedded
Systems: Timers

79

Andrew H. Fagg: Embedded
Systems: Timers

80

n
I I ' l Count TOVA
I e r 1 Clear - (Int. Req.)

Control Logic

Direction el Clock Select
Edge
Detector kal m
TOP | BOTTOM
¥ r y (From Prescaler)
‘ Timer/Counter ?
TCNTn |
L = | [=0]
* ‘ * QOCFnA
] ’_.{Inl. Req.)
|
1 Waveform
= [Generation R
OCRnA ; ;
I | []
| Fixed QCF”B
o | TOP (Int.Reqg.)
P | Values —
T3 | aveform
2 = | ™ Generation - OCnB
E [
|
o OCR I
nB
{ Froam Analog
Bl : Comparator Quput)
| ICFn (Int.Req.)
i |
|
= | : Edge MNoise
RN I‘ | Detector Canceler
: | ICPn
| TGCRnA [| TCCRnB |
el

vﬂ

Andrew H. Fagg: tmpeadae _ B,
Systems: Tiﬁ:—ggure from: Atmel mega 8 specmcajtlon

Timer 1

Counter_

DATA BUS

Count

Clear

Direction

YyYpy

Timer/Counter

<-T| TCNTn

TOVn

- (Int. Req.)

Control Logic

clkr,

Clock Select

Edge
Detector

TOP | BOTTOM

{ From Prescaler)

OCRnA

OCRnB

:

]
o]
>

_1
9]
9]
o
S

=

vﬂ

QOCFnA
(Int. Req.)

Waveform

Generation 1 0CnA
| 1

Fixed OCFnB
: TOP (Int.Req.)
| Valuas T
i aveform
| - Generation i OCnB
|
|
: { Froam Analog
| Comparator Quput)
| ICFn (Int.Req.)
|
|
Edge MNoise
: Detector Canceler
| ICPn
TCCRnB |
el
to)4

Andrew H. +agg: Empeaded

Systems: Timers

=
I I ' l Count /TO‘«"H
I e r 1 Clear - (Int. Req.)

Control Logic

Direction el Clock Select
Edge
Detector - i
TOP | BOYTOM

Source _ z (} N

Timer/Counter
— —

(Int. Req.)

selection [T—F— =G _

n Waveform
d = Generation o
r SCal e r OCRnA g \I\
e - AR
| Fixed i
) i = {Int.Req.)
a y : Values - Waveform I OCHB
: = | Generation
E |
|
(] OCR l
nB
{ Froam Analog
: Comparator Quput)
eesfie e : ICFn {Int.Req.)
y
|
| Edge Moise
ICRn I.‘ : Detector] Canceler
: | ICPn
| TCCRnA [| TCCRnB |

vﬂ -
Andrew H. Fagg: Empeadaded 83
Systems: Timers

=
I I ' l Count TOVn
I e r 1 Clear - (Int. Req.)

Control Logic
onirot Legie Clock Select

Direction

clkr,
pl—————

Edge
Detector kal m
TOP | BOTTOM

‘ Tir:er,-':gu:ter y Y ? { From Prescaler)
compare T 5
P L L ol
|
re g I Ste r | = i : ;a:::;'i:n L wocna
mrtitichhs L\ F———- OCRAA - ﬁ
e Continuously 2
W | V—;EIZE ’—.{Inl.ﬂeq.]
com pal’ed B = | pf Mo | oo
. £ |
Wlth Cou nter EEJ _________ QCRNB cormrmmeey : { From Analog
Bkt : Comparator Quput)
|
|
|
|

’—bICFn (Int.Req.)
= | Edge MNoise
AN I‘ ; Detector Canceler
ICPn

| TCCRNA | | TCCRNB |
vﬂ ¢ # g
Andrew H. Fagg: Empbedaed 84

Systems: Timers

=
I I ' l Count TOVn
I e r 1 Clear - (Int. Req.)

Control Logic
Direction g el Clock Select
e —
Edge
Detector & m
TOP | BOTTOM
| |
n a- C n Y { From Prescaler)
m — = Y
‘ Timer/Counter ?

OCFnA

 Change the | _\l-LQ
state of an - 5)
output pln iy A FF} ocrme.

e And/or [B
generate an e — o P e 2
interrupt . o r e] choane ‘[]:

DATA BUS
ﬁ

:

: ICPn
| TCCRNA | | TCCRNB |
"1 :t ‘: g
Andrew H. Fagg: Empbedaed 85

Systems: Timers

Timer 1

Output
compare
register Il

DATA BUS

<-T| TCNTh | |

Count

Clear

Direction

Control Logic

TOVn

¥

TOP

Timer/Counter

- (Int. Req.)

Clock Select

Edge
Detector

{ From Prescaler)

ICFn (Int.Req.)

-

Ed

“‘I ICI?H I“ Dele?:?or
o

| TCCRNA | | TCCRNB |

; v

vﬂ

Andrew H. Fagg: Empeadaded
Systems: Timers

QOCFnA
(Int. Req.)
Waveform
Generation Hen
OCFnB
(Int.Req.)
Waveform
- Generation Dnt
{ Froam Analog
Comparator Quput)
Moise
Canceler
ICPn
to]o]

=
I I ' l Count TOVn
I e r 1 Clear - (Int. Req.)

Control Logi
M o Clock Select

Direction

Input capture Y ! L

{ From Prescaler)

’—>|CFI'I {Int.Req.)
I Edge MNoise

Detector Canceler

A Timer/Gounter 3
register: T I*I‘I I
e On external EII | el B
event, copy e — ﬁ‘
stateof 4N\ o5 5
counter P —

Andrew H. Fagg: Empeadaded 4
Systems: Timers

Timer 1: Register Access and Timing

DATA BUS (s-bit)

TOVn
(Int. Req.)

TEMP (8-bit)

c count Edge
h D | Tn
TCNTnH (8-bit) [TCNTnL (8-bit) clear | ek, etector
i ——— Control Logic je
TCNTn (16-bit Counter) | oo "

{ From Prescaler)
TTDP TBD‘I‘FOM

Problem: 8 bit data bus, but 16 bit registers

 How to access the registers so as to avoid
the shared data problem?

Clock Select

Andrew H. Fagg: Emiefigefrom: Atmel mega 8 specificttion
Systems: Timers

DATA BUS (s-bit)

TEMP (8-bit)

:

TOVn

Timer 1: Writing

(Int. Req.)

count

TCNTnH (8-bit) I TCNTnL (8-bit)

clear clky,

TCNTn (16-bit Counter)

Control Logic jed

Clock Select

direction

Tn

{ From Prescaler)

Edge
[‘: Detector il

TTDF’ TBD'I_I'DM

* Write to the high byte first (TCNTnH)
— This stores the 8-bit value in a temporary register

* Write to low byte (TCNTNL)

— What is on the data bus is written to the low byte
— The temporary register is written to the high byte

(so both are changed simultaneously)

Andrew H. Fagg: Embedded
Systems: Timers

91

Timer 1: Reading

DATA BUS (s-bit)

TOVn
(Int. Req.)

TEMP (8-bit)

c count Edge
h D | Tn
TCNTnH (8-bit) JTCNTnL (8-bit) clear _ clky,, etector
i ——— Control Logic je
TCNTn (16-bit Counter) | oo "
{ From Prescaler)
TTDP TBD‘I‘FOM

 Read from the low byte first (TCNTNL)

— TCNTnH will also be written to the temporary
register

 Read from high byte (TCNTnH)

— This will actually pull the value from the
temporary reglgt@gw H. Fagg: Embedded 92

Systems: Timers

Clock Select

Timer 1 Access: The Good News

* OUIib provides functions to do this for you:
unsigned Int timerl read(void);

void timerl set(unsigned i1nt);

e Note:
— QUIib i1s “thread safe”

— Interrupts are disabled between access of the
high and low registers (see implementations)

Andrew H. Fagg: Embedded 93
Systems: Timers

Input Capture Unit

TEMP (8-bit)

DATA BUS (s-bit)

ICRnH (8-bit) ICRNL (8-bit)

.

WRITE ICRn (16-bit Register)

TCNTnH (8-bit)

TCNTNL (8-bit)

TCNTn (16-bit Counter)

ik

o ACO*

Analog
Cormnparator

ICPn

ACIC*

ICNC ICES
Moise \ Edge
Canceler Detector

p=-ICFn (Int. Req.)

Systems: Tirrdgure from: Atmel mega 8 specification

Captured value

e Access just as
you would
TCNTn[H L] TEMP (8-bit)

Input Capture Unit

DATA BUS (s-bit)

.

TCNTnH (8-bit) TCNTNL (8-bit)

ICRnH (8-bit) ICRNL (8-bit)

WRITE ICRn (16-bit Register)

2 =

& ACO* ACIC* ICNC ICES
P Analog ¢ ¢

Comparator Noise Edge

Canceler Detector

TCNTn (16-bit Counter)

p=-ICFn (Int. Req.)
ICPn

Systems: Tirrdgure from: Atmel mega 8 specification

Copy on event

Input Capture Unit

TEMP (8-bit)

DATA BUS (s-bit)

.

ICRNH (8-bit) ICRNL (8-bit) TCNTnH (8-bit) TCNTNL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
e |
ur ACO* ACIC* ICNC ICES
P Analog ¢ ¢
Bl e I
ICPn

Systems: Tirrdgure from: Atmel mega 8 specification

Event detector

Input Capture Unit

DATA BUS (s-bit)

TEMP (8-bit)

.

ICRNH (8-bit) ICRNL (8-bit) TCNTnH (8-bit) TCNTNL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
ik

\ _—— —

& ACO* ACIC* ICNC ICES

P Analog ¢ ¢

Comparator :

Cgl::;z?er ™ Dgti?:?r::r »-1CEn {int. Heg)

ICPn

ega 8 specification

Input Capture Unit

No OUlib support right now...

Critical registers:

e ICRN[LH]: captured value

« TCCR1B: configuration

« ACSR: event source selection
 TIMSK: interrupt enable bit

Andrew H. Fagg: Embedded
Systems: Timers

101

Input Capture Unlt TCCRlB

1

R/W R/W R/W R/W
0 0 0 0 0 0 0 0

 ICNC1: Input compare noise canceller
— Value = 1 -> canceling is turned on

— Takes multiple samples of the pin state before
detecting an event (this induces a small delay
but gives a cleaner signal)

o |ICES1: Input compare edge select
— Value = 1 ->rising edge
— Value = 0 -> fallig edgaedde 102

Systems: Timers

Input Capture Unit: ACSR

Bit 6] 4 K] 2 1

CEG ACIC] AGIST | ACISU] ACSH
Read/Write R/'W R/W R/W R/W R/W R/'W
Initial Value 0 0 N/A 0 0 0 0 0

ACIC: External event source
e Value = 1 -> Analog comparator
e Value =0 ->ICPn pin

Andrew H. Fagg: Embedded 103
Systems: Timers

Input Capture Unit: TIMSK

Bit 7 6 5 4 3 2 1 0
OCIE2 TOIE2 TICIE1 OCIE1A W TOIE1 — TOIED TIMSK
Read/Write R/W RW RN R/W R/wW R/W R R/W
Initial Value 0 0 0 0 0 0 0 0
®

TICIEL: Input capture interrupt enable
— Value = 1 -> enabled

Andrew H. Fagg: Embedded
Systems: Timers

104

Some Example Code

// Turn on noise canceling; detect
rising edge
TCCR1B |= BV(ICNC1) | BV(ICES]1);

1 1
7 6 D 4 3 2 1 0
R/W RW R R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
AlIUIrew m. rdyy. eiiueuuecu J.U5

Systems: Timers

Some Example Code

// Turn on noise canceling; detect
rising edge

TCCR1B |= BV(ICNC1) | BV(ICES1);

// Use pin as 1nput (not analog comp)

ACSR &= ~ BV(ACIE):

Bit 7 (5] 5 4 3 2 1 0

[ACD_] ACBG | ACO_| AGI] AGE] ACKC] ACIST | AGI0] ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 N/A 0 0 0 0 0

DYSLEINs. HITers

Some Example Code

// Turn on noise canceling; detect
rising edge
TCCR1B |= BV(ICNC1) | BV(ICES1);
// Use pin as 1nput (not analog comp)
ACSR &= ~ BV(ACIE);
// Enable i1Interrupt
TIMSK |= BV(TICIELl);
1

6 2 4 3

i 2 1 0
R/W R/W R/W R W R R/W

Read/Write R/W "W =}
Initial Value] 0] 0] 1] 0 0

Bit

Some Example Code

// Turn on noise canceling; detect
rising edge

TCCR1B |= BV(ICNC1) | BV(ICES1);

// Use pin as 1nput (not analog comp)
ACSR &= ~ BV(ACIE);

// Enable i1Interrupt

TIMSK |= BV(TICIELl);

// Enable global i1nterrupts

sel();

Andrew H. Fagg: Embedded 108
Systems: Timers

Interrupt Service Routine

ISR(TIMERL CAPT vec)

{
// Do something ..

L

e Read ICRN[LH] as soon as possible (it
could be overwritten by the next event)

 You can change the configuration of the
Input capture unit (e.g. to alternate
between falling and rising edges)

Systems: Timers

109

Output Compare Mode

General 1dea:

e Counter moves through some sequence of
values

e At some specified counter value(s), the
processor produces an event

— Generate an interrupt
— Change the state of the output pin

Andrew H. Fagg: Embedded 110
Systems: Timers

Many Different Output Compare

Modes

Table 39. Waveform Generation Mode Bit Description

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation'” TOP OCR1x Set on

0 0 0 0 0 Mormal OxFFFF | Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF | TOP BOTTOM
4 0 1 0 0 CTC OCR1A | Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF | TOP TOP

& 0 1 1 0 Fast PWM, 9-bit 0x01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0xD3FF | TOP TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM
g 1 o 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate | MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A | TOP TOP

Mote: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

Systems: Timers

111

We WIill Focus on

Table 39. Waveform Generation Mode Bit Description

Fast PWM

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation'" TOP OCR1x Set on
0 0 0 0 0 Mormal OxFFFF | Immediate | MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF | TOP BOTTOM
3 0 0 1 1 P B 10-bit 0x03FF | TOP BOTTOM
4 o | o0 0 cTC hqsmm-mx\
5 0 1 0 1 Fast PWM, 8-bit 0x00FF | TOP TOP
& 0 1 1 0 Fast PWM, 9-bit 0x01FF | TOP TOP
0 1 1 1 Fast PWM, 10-bit 0xD3FF | TOP TOP
8 1 y a8 il PW&H——'MSM BOTTOM
g 1 o 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate | MAX
13 1 1 0 1 (Reserved) - - -
14 1 1 1 0 Fast PWM ICR1 TOP TOP
15 1 1 1 1 Fast PWM OCR1A | TOP TOP
Mote: . The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

Systems: Timers

112

Output Compare Mode: Fast PWM

Generating a pulse width modulated signal:

e Counter increments from BOTTOM (0) to
TOP (configurable). Once TOP is
reached:

— Set the state of an output pin (e.g., setto 1)
— Roll over to BOTTOM

 \When the counter reaches a specific
Intermediate value:

— Change the state of the output pin (e.g. to O)

Andrew H. Fagg: Embedded 113
Systems: Timers

DATA BUS

Count TOV
- n
Clear (Int. Req.)
Control Logic
Direction ? el Clock Select
Edge
Detector kal m
TOP | BOTTOM
¥ r { { From Prescaler)
‘ Timer/Counter ?
TCNTn |
L = | [=0]
* ‘ * QOCFnA
] (Int. Req.)
|
1 Waveform
= [Generation R
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
T3 | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput)
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ : Detector Canceler
: | ICPn
| TGCRnA [| TCCRnB |
el

vﬂ

Andrew H. Fagg: Empeadaded 114
Systems: Timers

DATA BUS

Count TOV

- n
Clear (Int. Req.)
Control Logic

Direction el Clock Select

Edge

¥
‘ Timer/Counter

<-T| TCNTn

(From Prescaler)

1—
Detector
OX3ff TOP | BOTTOM
11

Il
Il
o

0x101 * [* OCFnA
1 (Int. Req.)
|
1 Waveform
O 103 e I Generation mpQGns
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
= | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput)
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ ; Detector Canceler
: | ICPn
| TGCRnA [| TCCRnB |

vﬂ

Andrew H. Fagg: Empeadaded 115
Systems: Timers

DATA BUS

Count TOV

- n
Clear (Int. Req.)
Control Logic

Direction el Clock Select

Edge

¥
‘ Timer/Counter

<-T| TCNTn

(From Prescaler)

1—
Detector
OX3ff TOP | BOTTOM
11

Il
Il
o

0x102 * [* OCFnA
1 (Int. Req.)
|
1 Waveform
O 103 e I Generation mpQGns
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
= | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput)
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ ; Detector Canceler
: | ICPn
| TGCRnA [| TCCRnB |

vﬂ

Andrew H. Fagg: Empeadaded 116
Systems: Timers

DATA BUS

Count TOVR
Clear . - (Int. Req.)
Direction Control Logie clky, Clock Select
e —
Edge
Detector kal m
OX3ff TOP | BOTTOM
¥ (From Prescaler)
‘ Timer/Counter | ?
<-T| TCNTn | | N m
- 5 - Generate Interrupt
0x103 . = ocFnA
1 (Int. Req.)
|
1 Waveform
$! i Generation » QGna
0x103 :
OCRnA Set pIN to 0
| []
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
aveform
= : - Generation i OCnB
|
|
QCRnB |
Lt { Froam Analog
: Comparator Quput)
| ’—bICFn (Int.Req.)
i |
“‘I : Edge Moise
GRn I‘ i Detector ¢ Canceler
: | ICPn

=
0
0
I
3

=
=
o
o
ut)
=

m

vﬂ

Andrew H. Fagg: Empeadaded 11/
Systems: Timers

DATA BUS

Count

Clear

¥

Direction

TOVn

Control Logic

‘ Timer/Counter

TCNTn

<-TI

e
Ox3ff TOP | BOTTOM
1

- (Int. Req.)

clkr,

Clock Select

Edge
Detector

{ From Prescaler)

‘ QCFnA
Oxsfe * 1 * (Int. Req.)
|
1 Waveform
= [Generation R
0x103
OCRnA
- H
l Fixed OCFnB
: TOP (Int.Req.)
| Valuas T
o5 i aveform
i | - Generation i OCnB
|
|
OCRnB |
{ Froam Analog
- : Comparator Quput)
| ’—bICFn (Int.Req.)
i |
: Edge MNoise
“‘I ICRn I“ i Detectar ¢ Canceler
: : ICPn
| TGCRnA [| TCCRnB |
vﬂ ¢ # -
Andrew H. Fagg: Empbedaed 118

Systems: Timers

DATA BUS

Count TOW
-
Clear (Int. Req.)
Control Logic

Direction ':"‘r. Clock Select

Edge

Detector
OX3ff TOP | BOTTOM

k i | Fram Prescaler)
‘ Timer/Counter
TCNTn |
| | I | =0 |
‘ OCFnA
OXBff * | * (Int. Req.)
|
~ | Waveform 'I ocnA
= I Generation L
0x103 :
— Setpinto 1l
: leed DRk
| ToP (Int.Req.)
| Values Wave
- i aveform
= | ™ Generation S
|
|
OCRnB !
{ Froam Analog
Bl : Comparator Quput)
| ’—bICFn (Int.Req.)
y
: Edge Moise
“‘I ICRn I" i Detectar Canceler
: | ICPn
| TGCRnA | | TCCRnB |

vﬂ -
Andrew H. Fagg: Empeadaded 119
Systems: Timers

PWM and Interrupt Freguency

clock freq
prescalar * (1+ TOP)

pwm freq =

Example:

16,000,000
owm freq =

1024* (1+ 0x3 f)
—15.2588 Hz

his gives us 10 bits of pulse width resolution

Andrew H. Fagg: Embedded 120
Systems: Timers

Pin Driver

Figure 36. Compare Match Output Unit, Schematic

Circult
COMnx1
COMnx0 Waveform D Q
FOCnx Generator 1\

Use Of thIS ! OCnx
waveform N fﬂ -
generator Jo o
overrides |

=
PORTX | | PO
<
= =D Q
Y| DDR
Clka.-'o

OCRNA IS
double-buffered

e The real
OCRNA as
shown IS
updated when
the counter
rolls over

e Eliminates
problems with
updates in the
middle of your
pulse

DATA BUS

Count TOW
- n
Clear (Int. Req.)
Control Lo
Direction ogie Clock Select
Edg
Detector ad ¥
TORP | BOTTOM
{ From Presca ler)
‘ Timer/'Counter ?
TCNT |
| = =0 |
* ‘ * OCFnA
1 (Int. Req.)
|
| Waveform
| = I [Genera tion T s
QOCRnA 2 E
| 1
| Fixed QCF”B
| TOP (Int.Req.)
| Value —
5 | aveform
5 | ™ Genera tion ———M™0CnB
|
|
OCRnB I
e { From Analog
: Comparator Quput)
| ICFn (Int.Req.)
f |
|
S | X Edge Moi
GRn I'- i Detector ¢ Canceler

‘rl

Systemsv:vTimers

Configuration

Prescalar

Waveform Generation Mode (in our case,
—ast PWM, 10 bit)

Polarity of the output bit (Output Mode)
nterrupt enable (if desired)
nitial pulse width

Andrew H. Fagg: Embedded 123
Systems: Timers

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl_config(TIMER1 _PRE_1024);

Prescaler configuration is the same as with
timerO

Andrew H. Fagg: Embedded 124
Systems: Timers

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

1 0

Bit Fi B L 4 3 2 1 0
Read/Write R/W R/W R/W R/W W W R/W R/W
Initial Value 0 0 0 0 0 0 0 D

Systems: Timers

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

1 1
Bit Fi B L 4 3 2 1 0

Read/Write R/W R/W R/W R/W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 D

Systems: Timers

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1B & ~_BV(WGM13) | _BV(WGM12);

0 1

9 4 3 2 1 0

7 B
R/W R R W

512 c
Read/Write R/W W R/W R/W R/W R/
Initial Value 0 0 0 0 0 0 0 0

Bit

\JJ\JLUIII\J- LirrrIviI v

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt

TIMSK |= BV(OCIE1A);
Bit 7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R R/W

12
Initial Value 0 0 0 0 0 0 0 0 8

Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~(_BV(COM1A1l) | _BV(COM1A0));

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt
TIMSK |= BV(OCIE1A);

// Enable global interrupts
sei();

Andrew H. Fagg: Embedded 129
Systems: Timers

Use of PWM Generator

Change the pulse width at any time

e This change will take effect at the
beginning of the next pulse

* Must deal with the synchronous update of
the high and low byte of OCR1A

Andrew H. Fagg: Embedded 130
Systems: Timers

Continuously Varying Pulse Width

while(l);
{
// Loop over entire range
for(val=0; val<0x400; ++val) {
// Write high byte first (goes to temporary register)
OCR1AH = (uint8 t) (val >> 8);

// Write low byte second (causes both to be written
// simultaneously)
OCR1AL = (uint8_t) (val & Oxff);

// Sleep
delay ms(1);
}s
}s

Andrew H. Fagg: Embedded 131
Systems: Timers

Temporary Register

* Registers such as OCR1AH are all mapped
to the same temporary register

e YOou must ensure that between the writes
to OCR1AH and OCR1AL that no other code

IS executed that manipulate the temporary
register

e This can come up if your ISR Is also
modifying these registers

Andrew H. Fagg: Embedded 132
Systems: Timers

Timer 2

e 8-bit counter
e Output-compare

« \Waveform generator
— S0: can also generate PWM signals

Andrew H. Fagg: Embedded 133
Systems: Timers

