Counter/Timers In the Mega8

The mega8 incorporates three counter/timer
devices. These can:

 Be used to count the number of events
that have occurred (either external or
Internal)

e Act as a clock

e Trigger an interrupt after a specified
number of events
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Timer O

e Possible input sources:
— Pin TO (PD4)
— System clock
 Potentially divided by a “prescaler”

e 8-bit counter

* \When the counter turns over from OxFF to
0x0, an interrupt can be generated
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Timer 0 Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

e Clock input to 10-bit counter
e Output bits: 3, 6, 8, and 10
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Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

. 4
TO T TTTTTTTTTTTTA : L
ization |}

MUX selects between ____p t+vyse | l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer 0 Implementation

1o . 4 L > Cloar 10-BIT T/C PRESCALER

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

! g
MUX selects between fiilil] l
these different inputs __w o
» Control bits determine ]
S O u r C e TIMER/COUNTERQ CLOCK SOURCE

clk.m
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Timer 0 Implementation

clk,o $ D 10-BIT T/C PRESCALER

~
PSR10 2 S

&
>
&
TO §TTTTTTTTTTTTTTTR ¢
1 Synch i

MUX selects between
these different inputs

e 000: No Input

>l

Cs00
Cs01
cs02
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Timer 0 Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

MUX selects between Pliveid l
these different inputs 223?3\»\

e 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer 0 Implementation

Y
w
4
=
o b
CK/8

MUX selects between
these different inputs

e 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer 0 Implementation

MUX selects between
these different inputs csot

cs02

e 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these l

Cs00

different inputs =
e 110: Falling edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

MUX selects between these
different inputs sl

e 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded 15
Systems: Timers



DATA BUS

Timer O

» TCNTO: 8-bit

TCCRn

counter (a register)

J,

e TCCRO: control

y

Control Logic

Timer/Counter

TCNTR

&

= OxFF

& register
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Timer O

e Clock source from

TCCRn

previous slide

J,

CIk‘Tn

9] Control Logic
o

< A

I—

S

y
Timer/Counter
TCNTn
= OxFF
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DATA BUS

Timer O

e Increment counter
on every low-to-high
transition

Timer/Counter
TCNTn

Andrew H. Fagg: Embedded 18
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Timer 0 Example

Suppose:
e 16MHz clock
e Prescaler of 1024

e \We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded
Systems: Timers

19



delay =

Timer 0 Example

10247155 _ 9948 18 ~10 ms
16,000,000
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Timer 0 Example

Suppose:
e 16MHz clock
e Prescaler of 1024

e \We walit for the timer to count from 0 to
156

How long does this take?
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delay =

Timer 0 Example

10247155 _ 9948 18 ~10 ms
16,000,000
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Timer 0 Code Example

timerO_config(TIMERO_PRE _1024); // Prescale by 1024
timerO_set(0); /[ Set the timerto O

// Do something else for a while
while(timerO_read() < 156) {
// Do something while waiting

¥

/I Break out at ~10 ms

See Atmel HOWTO for example code
(timer_demo2./€)z i
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Cascade of Clock Divisors

* Prescalar (timer 0): 1, 8, 64, 256, 1024

e Timer O counter: up to 256

— In this case, our software waited for timer O to
achieve a particular value

e Other timers can choose their divisor
arbitrarily (more on this soon)

Andrew H. Fagg: Embedded 29
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Timer 0 Example

Advantage over delay ms():
e Can do other things while waiting

e Timing Is much more precise

— We no longer rely on a specific number of
Instructions to be executed

— Interrupts do not interfere with the timing

Andrew H. Fagg: Embedded 30
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Timer 0 Example

Disadvantage:

* “something else” cannot take very much
time

What is the solution?

Andrew H. Fagg: Embedded
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Timer O Interrupt

What iIs the solution?
e Use Interrupts!

* \WWe can configure the timer to generate an
Interrupt every time the timer’s counter
rolls over from OxFF to Ox00

Andrew H. Fagg: Embedded 32
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Timer 0 Example |

Suppose:
e 16MHz clock
e Prescaler of 1024

How often Is the interrupt generated?

Andrew H. Fagg: Embedded
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Timer O Example Il

x
Interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded
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Timer 0 Example |

How many counts do we need so that we
toggle the state of PBO every second?

counts = 1000 ms =61.0352

16.384 ms

We will assume 61 is close enough.

Andrew H. Fagg: Embedded
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Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO_OVF _vect) {

static uint8_t counter = 0;

++counter;

if(counter == 61) {
// Toggle output state every 61st interrupt:
/[ This means: on for ~1 second and then off for ~1 sec
PORTB "= 1;
counter = 0O;

See Atmel HOWTO for example code
(t|mer_demo drew H. Fagg: Embedded

Systems: Timers
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Example Il: Initialization

Il Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timerO_config(TIMERO _PRE_1024);

I/l Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

%

Andrew H. Fagg: Embedded
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Timer O with Interrupts

This solution Is particularly nice:

» “something else” does not have to worry
about timing at all

— PBO state is altered asynchronously

 Note that we can have a shared data
problem (but not in this example)

Andrew H. Fagg: Embedded
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Cascade of Clock Divisors

e Prescalar: 1to 1024

e Timer O counter: 256

— Other timers can choose their divisor
arbitrarily

o Software: arbitrary

Andrew H. Fagg: Embedded
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Two Other Timers

Timer 1:
e 16 bit counter
e Prescalers: 1, 8, 64, 256, 1024

imer 2:
e 8 bit counter
e Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded
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Interrupt Service Routines

e Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
« Communication with the main program
using global variables

Andrew H. Fagg: Embedded
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Interrupts, Shared Data
and Compiler Optimizations

e Compilers (including ours) will often
optimize code In order to minimize
execution time

 These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded
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Shared Data and Compiler
Optimizations

For example:
A=A+ 1;
C=B*A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded
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Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;
+

What does the compiler do with this?

Andrew H. Fagg: Embedded
Systems: Timers
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Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A iInto register 1
while(1l) {

PORTB = R1,;
+

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded 51
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Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF_vect){
A = PIND;
by
 The global variable ‘A’ is being changed!
 The compiler has no way to anticipate this

Andrew H. Fagg: Embedded 52
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Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This Is accomplished when we declare the
global variable:

volatile uint8 t A;

Andrew H. Fagg: Embedded 53
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Information Encoding

Many different options for encoding
Information for transmission to/from other

devices:
 Parallel digital (e.qg., for our Project 1)
o Serial digital (e.g., USB, RS232)
 Analog: use voltage to encode a value

Andrew H. Fagg: Embedded
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Information Encoding

An alternative: pulse-width modulation
(PWM)

e |[nformation is encoded in the time
netween the rising and falling edge of a
nulse

Andrew H. Fagg: Embedded 55
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PWM Example:

RC Servo Motors

e 3 pins: power (red),
ground (black), and
command signal (white)

e Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded 56
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PWM Example

20 ms
- >~

- >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

0.5 ms: O degrees

e 2.5 ms: 180 degrees

Andrew H. Fagg: Embedded 57
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RC Servo Motors

 Internal potentiometer measures the
current orientation of the shatft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

 Mechanical stops limit the range of motion

— These stops can be removed for unlimited
rotation

Andrew H. Fagg: Embedded 58
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PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded
Systems: Timers
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Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

 They are linearly related (essentially)

Andrew H. Fagg: Embedded 60
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Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded 61
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Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

e Again: they are linearly related (essentially)

 |If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded 62
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Controlling LED Brightness

We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded 63
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Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter

e \When the counter is O, turn the LED on

 WWhen the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded 65
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volatile uiInt8 t duration = O;

ISR(TIMERO OVF vect)
{

static uiInt8 t counter = 0O;

Andrew H. Fagg: Embedded
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volatile uiInt8 t duration = O;

ISR(TIMERO OVF vect)

¢ static uiInt8 t counter = O;
1T(counter == 0) PORTB |= 1;
1f(counter >= duration) PORTB &= ~1;
++counter;

by

Andrew H. Fagg: Embedded
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Initialization Detalls

e Set up timer
* Enable interrupts

e Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded
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Initialization

int main(void) {
DDRB = OxFF;
PORTB = 0;

/I Initialize counter
duration = O;

Il Interrupt configuration
timer0O_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0O_enable();

// Enable global interrupts

sel();

Andrew H. Fagg: Embedded
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PWM Implementation

What is the resolution (how long is one
iIncrement of “duration™)?

Andrew H. Fagg: Embedded
Systems: Timers
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PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timerO counter (8 bits) expires every 256
clock cycles

250

t =
16000000

=16 1S
(assuming a 16MHz clock)

Andrew H. Fagg: Embedded 73
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PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded
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PWM Implementation

What is the period of the pulse?

* The 8-bit counter (of the interrupt) expires every
256 Interrupts

. _ 256*256

= =4.096 ms
16000000

Andrew H. Fagg: Embedded 75
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Doing “Something Else”

unsigned Int 1;
while(1l) {
for(hn = 0; 1 < 256; ++1)
duration = 1;
delay ms(50);

Andrew H. Fagg: Embedded
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Timer 1

e 16 bit counter
— All the same functionality as we see with timer O

 One input capture unit

— On an external event, save the state of the
counter

« Two output compare units

— Generate an event when the counter reaches a
certain state (e.g., we can use this to do PWM
In hardware!)

Andrew H. Fagg: Embedded 77
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Timer 1

e There are comparable functions in oulib
(to timer0)

 There are also functions that give you
access to the output compare and input
capture functionality

 Note: many timer 1 registers are 16 bit
registers. Accesses to these must be
thread safe (oulib provides this for you)

Andrew H. Fagg: Embedded
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Timer 2

e 8-bit counter
e Output-compare

« \Waveform generator
— S0: can also generate PWM signals

Andrew H. Fagg: Embedded
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Timer 1

Counter_

DATA BUS

Count

Clear

Direction

YyYpy

Timer/Counter

<-T| TCNTn

TOVn

- (Int. Req.)

Control Logic

clkr,

Clock Select

Edge
Detector

TOP | BOTTOM

{ From Prescaler )

OCRnA

OCRnB

:

]
o]
>

_1
9]
9]
o
S

=

vﬂ

QOCFnA
(Int. Req.)

Waveform

Generation 1 0CnA
| 1

Fixed OCFnB
: TOP (Int.Req.)
| Valuas T
i aveform
| - Generation i OCnB
|
|
: { Froam Analog
| Comparator Quput )
| ICFn (Int.Req.)
|
|
Edge MNoise
: Detector Canceler
| ICPn
TCCRnB |
el
to )4
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Control Logic

Direction el Clock Select
Edge
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(Int. Req.)
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| Fixed i
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|
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Edge
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=
I I ' l Count TOVn
I e r 1 Clear - (Int. Req.)

Control Logic
Direction g el Clock Select
e —
Edge
Detector & m
TOP | BOTTOM
| |
n a- C n Y { From Prescaler )
m — = Y
‘ Timer/Counter ?

OCFnA

 Change the | _\l-LQ
state of an - 5 )
output pln iy A FF} ocrme.

e And/or [ B
generate an e — o P e 2
interrupt . o r e ] choane ‘[]:

DATA BUS
ﬁ

:

: ICPn
| TCCRNA | | TCCRNB |
"1 :t ‘: g
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Timer 1

Output
compare
register Il

DATA BUS

<-T| TCNTh | |

Count

Clear

Direction

Control Logic

TOVn

¥

TOP

Timer/Counter

- (Int. Req.)

Clock Select

Edge
Detector

{ From Prescaler )

ICFn (Int.Req.)

-

Ed

“‘I ICI?H I“ Dele?:?or
o

| TCCRNA | | TCCRNB |

; v

vﬂ
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=
I I ' l Count TOVn
I e r 1 Clear - (Int. Req.)

Control Logi
M o Clock Select

Direction

Input capture Y ! L

{ From Prescaler )

’—>|CFI'I {Int.Req.)
I Edge MNoise

Detector Canceler

A Timer/Gounter 3
register: T I*I‘I I
e On external EII | el B
event, copy e — ﬁ‘
stateof 4N\ o5 5
counter P —

Andrew H. Fagg: Empeadaded 4
Systems: Timers



Timer 1: Register Access and Timing

DATA BUS (s-bit)

TOVn
(Int. Req.)

TEMP (8-bit)

c count Edge
h D | Tn
TCNTnH (8-bit) [ TCNTnL (8-bit) clear | ek, etector
i ——— Control Logic je
TCNTn (16-bit Counter) | oo "

{ From Prescaler )
TTDP TBD‘I‘FOM

Problem: 8 bit data bus, but 16 bit registers

 How to access the registers so as to avoid
the shared data problem?

Clock Select

Andrew H. Fagg: Emiefigefrom: Atmel mega 8 specificttion
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DATA BUS (s-bit)

TEMP (8-bit)

:

TOVn

Timer 1: Writing

(Int. Req.)

count

TCNTnH (8-bit) I TCNTnL (8-bit)

clear clky,

TCNTn (16-bit Counter)

Control Logic jed

Clock Select

direction

Tn

{ From Prescaler )

Edge
[ ‘: Detector il

TTDF’ TBD'I_I'DM

* Write to the high byte first (TCNTnH)
— This stores the 8-bit value in a temporary register

* Write to low byte (TCNTNL)

— What is on the data bus is written to the low byte
— The temporary register is written to the high byte

(so both are changed simultaneously)

Andrew H. Fagg: Embedded
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Timer 1: Reading

DATA BUS (s-bit)

TOVn
(Int. Req.)

TEMP (8-bit)

c count Edge
h D | Tn
TCNTnH (8-bit) JTCNTnL (8-bit) clear _ clky,, etector
i ——— Control Logic je
TCNTn (16-bit Counter) | oo "
{ From Prescaler )
TTDP TBD‘I‘FOM

 Read from the low byte first (TCNTNL)

— TCNTnH will also be written to the temporary
register

 Read from high byte (TCNTnH)

— This will actually pull the value from the
temporary reglgt@gw H. Fagg: Embedded 92
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Timer 1 Access: The Good News

* OUIib provides functions to do this for you:
unsigned Int timerl read(void);

void timerl set(unsigned i1nt);

e Note:
— QUIib i1s “thread safe”

— Interrupts are disabled between access of the
high and low registers (see implementations)
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Input Capture Unit

TEMP (8-bit)

DATA BUS (s-bit)

ICRnH (8-bit) ICRNL (8-bit)

.

WRITE ICRn (16-bit Register)

TCNTnH (8-bit)

TCNTNL (8-bit)

TCNTn (16-bit Counter)

ik

o ACO*

Analog
Cormnparator

ICPn

ACIC*

ICNC ICES
Moise \ Edge
Canceler Detector

p=-ICFn (Int. Req.)

Systems: Tirrdgure from: Atmel mega 8 specification



Captured value

e Access just as
you would
TCNTn[H L] TEMP (8-bit)

Input Capture Unit

DATA BUS (s-bit)

.

TCNTnH (8-bit) TCNTNL (8-bit)

ICRnH (8-bit) ICRNL (8-bit)

WRITE ICRn (16-bit Register)

2 =

& ACO* ACIC* ICNC ICES
P Analog ¢ ¢

Comparator Noise Edge

Canceler Detector

TCNTn (16-bit Counter)

p=-ICFn (Int. Req.)
ICPn

Systems: Tirrdgure from: Atmel mega 8 specification



Copy on event

Input Capture Unit

TEMP (8-bit)

DATA BUS (s-bit)

.

ICRNH (8-bit) ICRNL (8-bit) TCNTnH (8-bit) TCNTNL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
e |
ur ACO* ACIC* ICNC ICES
P Analog ¢ ¢
Bl e I
ICPn

Systems: Tirrdgure from: Atmel mega 8 specification



Event detector

Input Capture Unit

DATA BUS (s-bit)

TEMP (8-bit)

.

ICRNH (8-bit) ICRNL (8-bit) TCNTnH (8-bit) TCNTNL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
ik

\ _—— —

& ACO* ACIC* ICNC ICES

P Analog ¢ ¢

Comparator :

Cgl::;z?er ™ Dgti?:?r::r »-1CEn {int. Heg)

ICPn

ega 8 specification



Input Capture Unit

No OUlib support right now...

Critical registers:

e ICRN[LH]: captured value

« TCCR1B: configuration

« ACSR: event source selection
 TIMSK: interrupt enable bit

Andrew H. Fagg: Embedded
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Input Capture Unlt TCCRlB

1

R/W R/W R/W R/W
0 0 0 0 0 0 0 0

 ICNC1: Input compare noise canceller
— Value = 1 -> canceling is turned on

— Takes multiple samples of the pin state before
detecting an event (this induces a small delay
but gives a cleaner signal)

o |ICES1: Input compare edge select
— Value = 1 ->rising edge
— Value = 0 -> fallig edgaedde 102
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Input Capture Unit: ACSR

Bit 6 ] 4 K] 2 1

CEG ACIC ] AGIST | ACISU ] ACSH
Read/Write R/'W R/W R/W R/W R/W R/'W
Initial Value 0 0 N/A 0 0 0 0 0

ACIC: External event source
e Value = 1 -> Analog comparator
e Value =0 ->ICPn pin
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Input Capture Unit: TIMSK

Bit 7 6 5 4 3 2 1 0
OCIE2 TOIE2 TICIE1 OCIE1A W TOIE1 — TOIED TIMSK
Read/Write R/W RW RN R/W R/wW R/W R R/W
Initial Value 0 0 0 0 0 0 0 0
®

TICIEL: Input capture interrupt enable
— Value = 1 -> enabled

Andrew H. Fagg: Embedded
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Some Example Code

// Turn on noise canceling; detect
rising edge
TCCR1B |= BV(ICNC1) | BV(ICES]1);

1 1
7 6 D 4 3 2 1 0
R/W RW R R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
AlIUIrew m. rdyy. eiiueuuecu J.U5
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Some Example Code

// Turn on noise canceling; detect
rising edge

TCCR1B |= BV(ICNC1) | BV(ICES1);

// Use pin as 1nput (not analog comp)

ACSR &= ~ BV(ACIE):

Bit 7 (5] 5 4 3 2 1 0

[ACD_] ACBG | ACO_| AGI ] AGE ] ACKC ] ACIST | AGI0 ] ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 N/A 0 0 0 0 0

DYSLEINs. HITers



Some Example Code

// Turn on noise canceling; detect
rising edge
TCCR1B |= BV(ICNC1) | BV(ICES1);
// Use pin as 1nput (not analog comp)
ACSR &= ~ BV(ACIE);
// Enable i1Interrupt
TIMSK |= BV(TICIELl);
1

6 2 4 3

i 2 1 0
R/W R/W R/W R W R R/W

Read/Write R/W "W =}
Initial Value ] 0 ] 0 ] 1] 0 0

Bit



Some Example Code

// Turn on noise canceling; detect
rising edge

TCCR1B |= BV(ICNC1) | BV(ICES1);

// Use pin as 1nput (not analog comp)
ACSR &= ~ BV(ACIE);

// Enable i1Interrupt

TIMSK |= BV(TICIELl);

// Enable global i1nterrupts

sel();
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Interrupt Service Routine

ISR(TIMERL CAPT vec)

{
// Do something ..

L

e Read ICRN[LH] as soon as possible (it
could be overwritten by the next event)

 You can change the configuration of the
Input capture unit (e.g. to alternate
between falling and rising edges)

Systems: Timers
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Output Compare Mode

General 1dea:

e Counter moves through some sequence of
values

e At some specified counter value(s), the
processor produces an event

— Generate an interrupt
— Change the state of the output pin

Andrew H. Fagg: Embedded 110
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Many Different Output Compare

Modes

Table 39. Waveform Generation Mode Bit Description

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation'” TOP OCR1x Set on

0 0 0 0 0 Mormal OxFFFF | Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF | TOP BOTTOM
4 0 1 0 0 CTC OCR1A | Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF | TOP TOP

& 0 1 1 0 Fast PWM, 9-bit 0x01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0xD3FF | TOP TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM
g 1 o 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate | MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A | TOP TOP

Mote: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.
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We WIill Focus on

Table 39. Waveform Generation Mode Bit Description

Fast PWM

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation'" TOP OCR1x Set on
0 0 0 0 0 Mormal OxFFFF | Immediate | MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF | TOP BOTTOM
3 0 0 1 1 P B 10-bit 0x03FF | TOP BOTTOM
4 o | o0 0 cTC hqsmm-mx\
5 0 1 0 1 Fast PWM, 8-bit 0x00FF | TOP TOP
& 0 1 1 0 Fast PWM, 9-bit 0x01FF | TOP TOP
0 1 1 1 Fast PWM, 10-bit 0xD3FF | TOP TOP
8 1 y a8 il PW&H——'MSM BOTTOM
g 1 o 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate | MAX
13 1 1 0 1 (Reserved) - - -
14 1 1 1 0 Fast PWM ICR1 TOP TOP
15 1 1 1 1 Fast PWM OCR1A | TOP TOP
Mote: . The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

Systems: Timers
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Output Compare Mode: Fast PWM

Generating a pulse width modulated signal:

e Counter increments from BOTTOM (0) to
TOP (configurable). Once TOP is
reached:

— Set the state of an output pin (e.g., setto 1)
— Roll over to BOTTOM

 \When the counter reaches a specific
Intermediate value:

— Change the state of the output pin (e.g. to O)
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DATA BUS

Count TOV
- n
Clear (Int. Req.)
Control Logic
Direction ? el Clock Select
Edge
Detector kal m
TOP | BOTTOM
¥ r { { From Prescaler )
‘ Timer/Counter ?
TCNTn |
L = | [=0]
* ‘ * QOCFnA
] (Int. Req.)
|
1 Waveform
= [ Generation R
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
T3 | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput )
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ : Detector Canceler
: | ICPn
| TGCRnA [ | TCCRnB |
el

vﬂ
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DATA BUS

Count TOV

- n
Clear (Int. Req.)
Control Logic

Direction el Clock Select

Edge

¥
‘ Timer/Counter

<-T| TCNTn

( From Prescaler )

1—
Detector
OX3ff TOP | BOTTOM
11

Il
Il
o

0x101 * [ * OCFnA
1 (Int. Req.)
|
1 Waveform
O 103 e I Generation mpQGns
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
= | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput )
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ ; Detector Canceler
: | ICPn
| TGCRnA [ | TCCRnB |

vﬂ
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DATA BUS

Count TOV

- n
Clear (Int. Req.)
Control Logic

Direction el Clock Select

Edge

¥
‘ Timer/Counter

<-T| TCNTn

( From Prescaler )

1—
Detector
OX3ff TOP | BOTTOM
11

Il
Il
o

0x102 * [ * OCFnA
1 (Int. Req.)
|
1 Waveform
O 103 e I Generation mpQGns
OCRnA ; E
I | 1
| Fixed OCFnB
| TOP (Int.Reqg.)
| Values —
= | aveform
i | - Generation i OCnB
|
|
QCRnB |
{ Froam Analog
Bl : Comparator Quput )
| ICFn (Int.Req.)
i |
|
= | Edge MNoise
RN I‘ ; Detector Canceler
: | ICPn
| TGCRnA [ | TCCRnB |

vﬂ
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DATA BUS

Count TOVR
Clear . - (Int. Req.)
Direction Control Logie clky, Clock Select
e —
Edge
Detector kal m
OX3ff TOP | BOTTOM
¥ ( From Prescaler )
‘ Timer/Counter | ?
<-T| TCNTn | | N m
- 5 - Generate Interrupt
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|
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i |
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=
0
0
I
3

=
=
o
o
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=

m
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Andrew H. Fagg: Empeadaded 11/
Systems: Timers



DATA BUS

Count

Clear

¥

Direction

TOVn

Control Logic

‘ Timer/Counter

TCNTn

<-TI

e
Ox3ff TOP | BOTTOM
1

- (Int. Req.)

clkr,

Clock Select

Edge
Detector

{ From Prescaler )

‘ QCFnA
Oxsfe * 1 * (Int. Req.)
|
1 Waveform
= [ Generation R
0x103
OCRnA
- H
l Fixed OCFnB
: TOP (Int.Req.)
| Valuas T
o5 i aveform
i | - Generation i OCnB
|
|
OCRnB |
{ Froam Analog
- : Comparator Quput )
| ’—bICFn (Int.Req.)
i |
: Edge MNoise
“‘I ICRn I“ i Detectar ¢ Canceler
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| TGCRnA [ | TCCRnB |
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DATA BUS

Count TOW
-
Clear (Int. Req.)
Control Logic

Direction ':"‘r. Clock Select

Edge

Detector
OX3ff TOP | BOTTOM

k i | Fram Prescaler )
‘ Timer/Counter
TCNTn |
| | I | =0 |
‘ OCFnA
OXBff * | * (Int. Req.)
|
~ | Waveform 'I ocnA
= I Generation L
0x103 :
— Setpinto 1l
: leed DRk
| ToP (Int.Req.)
| Values Wave
- i aveform
= | ™ Generation S
|
|
OCRnB !
{ Froam Analog
Bl : Comparator Quput )
| ’—bICFn (Int.Req.)
y
: Edge Moise
“‘I ICRn I" i Detectar Canceler
: | ICPn
| TGCRnA | | TCCRnB |

vﬂ -
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PWM and Interrupt Freguency

clock freq
prescalar * (1+ TOP)

pwm freq =

Example:

16,000,000
owm freq =

1024* (1+ 0x3 f )
—15.2588 Hz

his gives us 10 bits of pulse width resolution
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Pin Driver

Figure 36. Compare Match Output Unit, Schematic

Circult
COMnx1
COMnx0 Waveform D Q
FOCnx Generator 1\

Use Of thIS ! OCnx
waveform N fﬂ -
generator Jo o
overrides |

=
PORTX | | PO
<
= =D Q
Y| DDR
Clka.-'o




OCRNA IS
double-buffered

e The real
OCRNA as
shown IS
updated when
the counter
rolls over

e Eliminates
problems with
updates in the
middle of your
pulse

DATA BUS

Count TOW
- n
Clear (Int. Req.)
Control Lo
Direction ogie Clock Select
Edg
Detector ad ¥
TORP | BOTTOM
{ From Presca ler)
‘ Timer/'Counter ?
TCNT |
| = =0 |
* ‘ * OCFnA
1 (Int. Req.)
|
| Waveform
| = I [ Genera tion T s
QOCRnA 2 E
| 1
| Fixed QCF”B
| TOP (Int.Req.)
| Value —
5 | aveform
5 | ™ Genera tion ———M™0CnB
|
|
OCRnB I
e { From Analog
: Comparator Quput )
| ICFn (Int.Req.)
f |
|
S | X Edge Moi
GRn I'- i Detector ¢ Canceler

‘rl
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Configuration

Prescalar

Waveform Generation Mode (in our case,
—ast PWM, 10 bit)

Polarity of the output bit (Output Mode)
nterrupt enable (if desired)
nitial pulse width
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Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl_config(TIMER1 _PRE_1024);

Prescaler configuration is the same as with
timerO
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Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

1 0

Bit Fi B L 4 3 2 1 0
Read/Write R/W R/W R/W R/W W W R/W R/W
Initial Value 0 0 0 0 0 0 0 D

Systems: Timers



Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

1 1
Bit Fi B L 4 3 2 1 0

Read/Write R/W R/W R/W R/W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 D
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Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1B & ~_BV(WGM13) | _BV(WGM12);

0 1

9 4 3 2 1 0

7 B
R/W R R W

512 c
Read/Write R/W W R/W R/W R/W R/
Initial Value 0 0 0 0 0 0 0 0

Bit

\JJ\JLUIII\J- LirrrIviI v



Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~ BV(COM1A0) | _BV(COM1Al);

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt

TIMSK |= BV(OCIE1A);
Bit 7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R R/W

12
Initial Value 0 0 0 0 0 0 0 0 8



Configuration

// Configure PWM for output compare pin A
// Prescaler
timerl _config(TIMER1 PRE 1024);

// Output Mode for channel A: output is low after compare match
// COM1A[10] = 10
TCCR1A = TCCR1A & ~(_BV(COM1A1l) | _BV(COM1A0));

// WGM1[3210] = 01 11. Fast PWM, 10-bit
TCCR1A = TCCR1A | _BV(WGM11) | _BV(WGM10);

TCCR1B = TCCR1A & ~(_BV(WGM13)) | _BV(WGM12);

// Enable interrupt
TIMSK |= BV(OCIE1A);

// Enable global interrupts
sei();
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Use of PWM Generator

Change the pulse width at any time

e This change will take effect at the
beginning of the next pulse

* Must deal with the synchronous update of
the high and low byte of OCR1A
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Continuously Varying Pulse Width

while(l);
{
// Loop over entire range
for(val=0; val<0x400; ++val) {
// Write high byte first (goes to temporary register)
OCR1AH = (uint8 t) (val >> 8);

// Write low byte second (causes both to be written
// simultaneously)
OCR1AL = (uint8_t) (val & Oxff);

// Sleep
delay ms(1);
}s
}s
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Temporary Register

* Registers such as OCR1AH are all mapped
to the same temporary register

e YOou must ensure that between the writes
to OCR1AH and OCR1AL that no other code

IS executed that manipulate the temporary
register

e This can come up if your ISR Is also
modifying these registers
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Timer 2

e 8-bit counter
e Output-compare

« \Waveform generator
— S0: can also generate PWM signals

Andrew H. Fagg: Embedded 133
Systems: Timers



